Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

0=x^{2}-10x+25-6
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
0=x^{2}-10x+19
Subtract 6 from 25 to get 19.
x^{2}-10x+19=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 19}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -10 for b, and 19 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 19}}{2}
Square -10.
x=\frac{-\left(-10\right)±\sqrt{100-76}}{2}
Multiply -4 times 19.
x=\frac{-\left(-10\right)±\sqrt{24}}{2}
Add 100 to -76.
x=\frac{-\left(-10\right)±2\sqrt{6}}{2}
Take the square root of 24.
x=\frac{10±2\sqrt{6}}{2}
The opposite of -10 is 10.
x=\frac{2\sqrt{6}+10}{2}
Now solve the equation x=\frac{10±2\sqrt{6}}{2} when ± is plus. Add 10 to 2\sqrt{6}.
x=\sqrt{6}+5
Divide 10+2\sqrt{6} by 2.
x=\frac{10-2\sqrt{6}}{2}
Now solve the equation x=\frac{10±2\sqrt{6}}{2} when ± is minus. Subtract 2\sqrt{6} from 10.
x=5-\sqrt{6}
Divide 10-2\sqrt{6} by 2.
x=\sqrt{6}+5 x=5-\sqrt{6}
The equation is now solved.
0=x^{2}-10x+25-6
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
0=x^{2}-10x+19
Subtract 6 from 25 to get 19.
x^{2}-10x+19=0
Swap sides so that all variable terms are on the left hand side.
x^{2}-10x=-19
Subtract 19 from both sides. Anything subtracted from zero gives its negation.
x^{2}-10x+\left(-5\right)^{2}=-19+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-10x+25=-19+25
Square -5.
x^{2}-10x+25=6
Add -19 to 25.
\left(x-5\right)^{2}=6
Factor x^{2}-10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{6}
Take the square root of both sides of the equation.
x-5=\sqrt{6} x-5=-\sqrt{6}
Simplify.
x=\sqrt{6}+5 x=5-\sqrt{6}
Add 5 to both sides of the equation.