Skip to main content
Solve for z
Tick mark Image
Solve for x
Tick mark Image

Similar Problems from Web Search

Share

0=\left(x^{2}-6x+9\right)\left(x-z\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
0=x^{3}-x^{2}z-6x^{2}+6xz+9x-9z
Use the distributive property to multiply x^{2}-6x+9 by x-z.
x^{3}-x^{2}z-6x^{2}+6xz+9x-9z=0
Swap sides so that all variable terms are on the left hand side.
-x^{2}z-6x^{2}+6xz+9x-9z=-x^{3}
Subtract x^{3} from both sides. Anything subtracted from zero gives its negation.
-x^{2}z+6xz+9x-9z=-x^{3}+6x^{2}
Add 6x^{2} to both sides.
-x^{2}z+6xz-9z=-x^{3}+6x^{2}-9x
Subtract 9x from both sides.
\left(-x^{2}+6x-9\right)z=-x^{3}+6x^{2}-9x
Combine all terms containing z.
\frac{\left(-x^{2}+6x-9\right)z}{-x^{2}+6x-9}=-\frac{x\left(3-x\right)^{2}}{-x^{2}+6x-9}
Divide both sides by -x^{2}+6x-9.
z=-\frac{x\left(3-x\right)^{2}}{-x^{2}+6x-9}
Dividing by -x^{2}+6x-9 undoes the multiplication by -x^{2}+6x-9.
z=x
Divide -\left(3-x\right)^{2}x by -x^{2}+6x-9.