0 = ( - \frac { 3 ( u + 3 ) ^ { 2 } } { 8 } + 1,5 ) + ( \frac { 3 } { 8 } u ^ { 2 } + 1,5 )
Solve for u
u=-\frac{1}{6}\approx -0,166666667
Share
Copied to clipboard
0=-3\left(u+3\right)^{2}+12+3u^{2}+12
Multiply both sides of the equation by 8.
0=-3\left(u^{2}+6u+9\right)+12+3u^{2}+12
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(u+3\right)^{2}.
0=-3u^{2}-18u-27+12+3u^{2}+12
Use the distributive property to multiply -3 by u^{2}+6u+9.
0=-3u^{2}-18u-15+3u^{2}+12
Add -27 and 12 to get -15.
0=-18u-15+12
Combine -3u^{2} and 3u^{2} to get 0.
0=-18u-3
Add -15 and 12 to get -3.
-18u-3=0
Swap sides so that all variable terms are on the left hand side.
-18u=3
Add 3 to both sides. Anything plus zero gives itself.
u=\frac{3}{-18}
Divide both sides by -18.
u=-\frac{1}{6}
Reduce the fraction \frac{3}{-18} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}