Solve for g (complex solution)
\left\{\begin{matrix}g=\frac{x-2\pi }{h}\text{, }&h\neq 0\\g\in \mathrm{C}\text{, }&x=2\pi \text{ and }h=0\end{matrix}\right.
Solve for h (complex solution)
\left\{\begin{matrix}h=\frac{x-2\pi }{g}\text{, }&g\neq 0\\h\in \mathrm{C}\text{, }&x=2\pi \text{ and }g=0\end{matrix}\right.
Solve for g
\left\{\begin{matrix}g=\frac{x-2\pi }{h}\text{, }&h\neq 0\\g\in \mathrm{R}\text{, }&x=2\pi \text{ and }h=0\end{matrix}\right.
Solve for h
\left\{\begin{matrix}h=\frac{x-2\pi }{g}\text{, }&g\neq 0\\h\in \mathrm{R}\text{, }&x=2\pi \text{ and }g=0\end{matrix}\right.
Graph
Share
Copied to clipboard
0 = 2 * \pi + h g - x
Substitute 2 * \pi for \tau.
2\pi +hg-x=0
Swap sides so that all variable terms are on the left hand side.
hg-x=-2\pi
Subtract 2\pi from both sides. Anything subtracted from zero gives its negation.
hg=-2\pi +x
Add x to both sides.
hg=x-2\pi
The equation is in standard form.
\frac{hg}{h}=\frac{x-2\pi }{h}
Divide both sides by h.
g=\frac{x-2\pi }{h}
Dividing by h undoes the multiplication by h.
0 = 2 * \pi + h g - x
Substitute 2 * \pi for \tau.
2\pi +hg-x=0
Swap sides so that all variable terms are on the left hand side.
hg-x=-2\pi
Subtract 2\pi from both sides. Anything subtracted from zero gives its negation.
hg=-2\pi +x
Add x to both sides.
gh=x-2\pi
The equation is in standard form.
\frac{gh}{g}=\frac{x-2\pi }{g}
Divide both sides by g.
h=\frac{x-2\pi }{g}
Dividing by g undoes the multiplication by g.
0 = 2 * \pi + h g - x
Substitute 2 * \pi for \tau.
2\pi +hg-x=0
Swap sides so that all variable terms are on the left hand side.
hg-x=-2\pi
Subtract 2\pi from both sides. Anything subtracted from zero gives its negation.
hg=-2\pi +x
Add x to both sides.
hg=x-2\pi
The equation is in standard form.
\frac{hg}{h}=\frac{x-2\pi }{h}
Divide both sides by h.
g=\frac{x-2\pi }{h}
Dividing by h undoes the multiplication by h.
0 = 2 * \pi + h g - x
Substitute 2 * \pi for \tau.
2\pi +hg-x=0
Swap sides so that all variable terms are on the left hand side.
hg-x=-2\pi
Subtract 2\pi from both sides. Anything subtracted from zero gives its negation.
hg=-2\pi +x
Add x to both sides.
gh=x-2\pi
The equation is in standard form.
\frac{gh}{g}=\frac{x-2\pi }{g}
Divide both sides by g.
h=\frac{x-2\pi }{g}
Dividing by g undoes the multiplication by g.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}