Solve for x
x = -\frac{35}{9} = -3\frac{8}{9} \approx -3.888888889
Graph
Share
Copied to clipboard
0=\frac{3}{5}\times 3x+\frac{3}{5}\left(-5\right)+10
Use the distributive property to multiply \frac{3}{5} by 3x-5.
0=\frac{3\times 3}{5}x+\frac{3}{5}\left(-5\right)+10
Express \frac{3}{5}\times 3 as a single fraction.
0=\frac{9}{5}x+\frac{3}{5}\left(-5\right)+10
Multiply 3 and 3 to get 9.
0=\frac{9}{5}x+\frac{3\left(-5\right)}{5}+10
Express \frac{3}{5}\left(-5\right) as a single fraction.
0=\frac{9}{5}x+\frac{-15}{5}+10
Multiply 3 and -5 to get -15.
0=\frac{9}{5}x-3+10
Divide -15 by 5 to get -3.
0=\frac{9}{5}x+7
Add -3 and 10 to get 7.
\frac{9}{5}x+7=0
Swap sides so that all variable terms are on the left hand side.
\frac{9}{5}x=-7
Subtract 7 from both sides. Anything subtracted from zero gives its negation.
x=-7\times \frac{5}{9}
Multiply both sides by \frac{5}{9}, the reciprocal of \frac{9}{5}.
x=\frac{-7\times 5}{9}
Express -7\times \frac{5}{9} as a single fraction.
x=\frac{-35}{9}
Multiply -7 and 5 to get -35.
x=-\frac{35}{9}
Fraction \frac{-35}{9} can be rewritten as -\frac{35}{9} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}