Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{2}x^{2}-\frac{3}{2}x+1=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\left(-\frac{3}{2}\right)^{2}-4\times \frac{1}{2}}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, -\frac{3}{2} for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\frac{9}{4}-4\times \frac{1}{2}}}{2\times \frac{1}{2}}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\frac{9}{4}-2}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\frac{1}{4}}}{2\times \frac{1}{2}}
Add \frac{9}{4} to -2.
x=\frac{-\left(-\frac{3}{2}\right)±\frac{1}{2}}{2\times \frac{1}{2}}
Take the square root of \frac{1}{4}.
x=\frac{\frac{3}{2}±\frac{1}{2}}{2\times \frac{1}{2}}
The opposite of -\frac{3}{2} is \frac{3}{2}.
x=\frac{\frac{3}{2}±\frac{1}{2}}{1}
Multiply 2 times \frac{1}{2}.
x=\frac{2}{1}
Now solve the equation x=\frac{\frac{3}{2}±\frac{1}{2}}{1} when ± is plus. Add \frac{3}{2} to \frac{1}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=2
Divide 2 by 1.
x=\frac{1}{1}
Now solve the equation x=\frac{\frac{3}{2}±\frac{1}{2}}{1} when ± is minus. Subtract \frac{1}{2} from \frac{3}{2} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=1
Divide 1 by 1.
x=2 x=1
The equation is now solved.
\frac{1}{2}x^{2}-\frac{3}{2}x+1=0
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}x^{2}-\frac{3}{2}x=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
\frac{\frac{1}{2}x^{2}-\frac{3}{2}x}{\frac{1}{2}}=-\frac{1}{\frac{1}{2}}
Multiply both sides by 2.
x^{2}+\left(-\frac{\frac{3}{2}}{\frac{1}{2}}\right)x=-\frac{1}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x^{2}-3x=-\frac{1}{\frac{1}{2}}
Divide -\frac{3}{2} by \frac{1}{2} by multiplying -\frac{3}{2} by the reciprocal of \frac{1}{2}.
x^{2}-3x=-2
Divide -1 by \frac{1}{2} by multiplying -1 by the reciprocal of \frac{1}{2}.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-2+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=-2+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=\frac{1}{4}
Add -2 to \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{1}{4}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{1}{2} x-\frac{3}{2}=-\frac{1}{2}
Simplify.
x=2 x=1
Add \frac{3}{2} to both sides of the equation.