Solve for p
p=\frac{p_{3}-1}{3}
Solve for p_3
p_{3}=3p+1
Share
Copied to clipboard
p_{3}-3p-1=0
Swap sides so that all variable terms are on the left hand side.
-3p-1=-p_{3}
Subtract p_{3} from both sides. Anything subtracted from zero gives its negation.
-3p=-p_{3}+1
Add 1 to both sides.
-3p=1-p_{3}
The equation is in standard form.
\frac{-3p}{-3}=\frac{1-p_{3}}{-3}
Divide both sides by -3.
p=\frac{1-p_{3}}{-3}
Dividing by -3 undoes the multiplication by -3.
p=\frac{p_{3}-1}{3}
Divide -p_{3}+1 by -3.
p_{3}-3p-1=0
Swap sides so that all variable terms are on the left hand side.
p_{3}-1=3p
Add 3p to both sides. Anything plus zero gives itself.
p_{3}=3p+1
Add 1 to both sides.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}