Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-2x^{2}-20x-42=0
Swap sides so that all variable terms are on the left hand side.
-x^{2}-10x-21=0
Divide both sides by 2.
a+b=-10 ab=-\left(-21\right)=21
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx-21. To find a and b, set up a system to be solved.
-1,-21 -3,-7
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 21.
-1-21=-22 -3-7=-10
Calculate the sum for each pair.
a=-3 b=-7
The solution is the pair that gives sum -10.
\left(-x^{2}-3x\right)+\left(-7x-21\right)
Rewrite -x^{2}-10x-21 as \left(-x^{2}-3x\right)+\left(-7x-21\right).
x\left(-x-3\right)+7\left(-x-3\right)
Factor out x in the first and 7 in the second group.
\left(-x-3\right)\left(x+7\right)
Factor out common term -x-3 by using distributive property.
x=-3 x=-7
To find equation solutions, solve -x-3=0 and x+7=0.
-2x^{2}-20x-42=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\left(-2\right)\left(-42\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, -20 for b, and -42 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-20\right)±\sqrt{400-4\left(-2\right)\left(-42\right)}}{2\left(-2\right)}
Square -20.
x=\frac{-\left(-20\right)±\sqrt{400+8\left(-42\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\left(-20\right)±\sqrt{400-336}}{2\left(-2\right)}
Multiply 8 times -42.
x=\frac{-\left(-20\right)±\sqrt{64}}{2\left(-2\right)}
Add 400 to -336.
x=\frac{-\left(-20\right)±8}{2\left(-2\right)}
Take the square root of 64.
x=\frac{20±8}{2\left(-2\right)}
The opposite of -20 is 20.
x=\frac{20±8}{-4}
Multiply 2 times -2.
x=\frac{28}{-4}
Now solve the equation x=\frac{20±8}{-4} when ± is plus. Add 20 to 8.
x=-7
Divide 28 by -4.
x=\frac{12}{-4}
Now solve the equation x=\frac{20±8}{-4} when ± is minus. Subtract 8 from 20.
x=-3
Divide 12 by -4.
x=-7 x=-3
The equation is now solved.
-2x^{2}-20x-42=0
Swap sides so that all variable terms are on the left hand side.
-2x^{2}-20x=42
Add 42 to both sides. Anything plus zero gives itself.
\frac{-2x^{2}-20x}{-2}=\frac{42}{-2}
Divide both sides by -2.
x^{2}+\left(-\frac{20}{-2}\right)x=\frac{42}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}+10x=\frac{42}{-2}
Divide -20 by -2.
x^{2}+10x=-21
Divide 42 by -2.
x^{2}+10x+5^{2}=-21+5^{2}
Divide 10, the coefficient of the x term, by 2 to get 5. Then add the square of 5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+10x+25=-21+25
Square 5.
x^{2}+10x+25=4
Add -21 to 25.
\left(x+5\right)^{2}=4
Factor x^{2}+10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+5\right)^{2}}=\sqrt{4}
Take the square root of both sides of the equation.
x+5=2 x+5=-2
Simplify.
x=-3 x=-7
Subtract 5 from both sides of the equation.