Solve for x
x = \frac{5 \sqrt{721} + 125}{16} \approx 16.203575989
x=\frac{125-5\sqrt{721}}{16}\approx -0.578575989
Graph
Share
Copied to clipboard
-16x^{2}+250x+150=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-250±\sqrt{250^{2}-4\left(-16\right)\times 150}}{2\left(-16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -16 for a, 250 for b, and 150 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-250±\sqrt{62500-4\left(-16\right)\times 150}}{2\left(-16\right)}
Square 250.
x=\frac{-250±\sqrt{62500+64\times 150}}{2\left(-16\right)}
Multiply -4 times -16.
x=\frac{-250±\sqrt{62500+9600}}{2\left(-16\right)}
Multiply 64 times 150.
x=\frac{-250±\sqrt{72100}}{2\left(-16\right)}
Add 62500 to 9600.
x=\frac{-250±10\sqrt{721}}{2\left(-16\right)}
Take the square root of 72100.
x=\frac{-250±10\sqrt{721}}{-32}
Multiply 2 times -16.
x=\frac{10\sqrt{721}-250}{-32}
Now solve the equation x=\frac{-250±10\sqrt{721}}{-32} when ± is plus. Add -250 to 10\sqrt{721}.
x=\frac{125-5\sqrt{721}}{16}
Divide -250+10\sqrt{721} by -32.
x=\frac{-10\sqrt{721}-250}{-32}
Now solve the equation x=\frac{-250±10\sqrt{721}}{-32} when ± is minus. Subtract 10\sqrt{721} from -250.
x=\frac{5\sqrt{721}+125}{16}
Divide -250-10\sqrt{721} by -32.
x=\frac{125-5\sqrt{721}}{16} x=\frac{5\sqrt{721}+125}{16}
The equation is now solved.
-16x^{2}+250x+150=0
Swap sides so that all variable terms are on the left hand side.
-16x^{2}+250x=-150
Subtract 150 from both sides. Anything subtracted from zero gives its negation.
\frac{-16x^{2}+250x}{-16}=-\frac{150}{-16}
Divide both sides by -16.
x^{2}+\frac{250}{-16}x=-\frac{150}{-16}
Dividing by -16 undoes the multiplication by -16.
x^{2}-\frac{125}{8}x=-\frac{150}{-16}
Reduce the fraction \frac{250}{-16} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{125}{8}x=\frac{75}{8}
Reduce the fraction \frac{-150}{-16} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{125}{8}x+\left(-\frac{125}{16}\right)^{2}=\frac{75}{8}+\left(-\frac{125}{16}\right)^{2}
Divide -\frac{125}{8}, the coefficient of the x term, by 2 to get -\frac{125}{16}. Then add the square of -\frac{125}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{125}{8}x+\frac{15625}{256}=\frac{75}{8}+\frac{15625}{256}
Square -\frac{125}{16} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{125}{8}x+\frac{15625}{256}=\frac{18025}{256}
Add \frac{75}{8} to \frac{15625}{256} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{125}{16}\right)^{2}=\frac{18025}{256}
Factor x^{2}-\frac{125}{8}x+\frac{15625}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{125}{16}\right)^{2}}=\sqrt{\frac{18025}{256}}
Take the square root of both sides of the equation.
x-\frac{125}{16}=\frac{5\sqrt{721}}{16} x-\frac{125}{16}=-\frac{5\sqrt{721}}{16}
Simplify.
x=\frac{5\sqrt{721}+125}{16} x=\frac{125-5\sqrt{721}}{16}
Add \frac{125}{16} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}