Solve for x
x=-10
x=3
Graph
Share
Copied to clipboard
x^{2}+7x-30=0
Swap sides so that all variable terms are on the left hand side.
a+b=7 ab=-30
To solve the equation, factor x^{2}+7x-30 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
-1,30 -2,15 -3,10 -5,6
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -30.
-1+30=29 -2+15=13 -3+10=7 -5+6=1
Calculate the sum for each pair.
a=-3 b=10
The solution is the pair that gives sum 7.
\left(x-3\right)\left(x+10\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=3 x=-10
To find equation solutions, solve x-3=0 and x+10=0.
x^{2}+7x-30=0
Swap sides so that all variable terms are on the left hand side.
a+b=7 ab=1\left(-30\right)=-30
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-30. To find a and b, set up a system to be solved.
-1,30 -2,15 -3,10 -5,6
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -30.
-1+30=29 -2+15=13 -3+10=7 -5+6=1
Calculate the sum for each pair.
a=-3 b=10
The solution is the pair that gives sum 7.
\left(x^{2}-3x\right)+\left(10x-30\right)
Rewrite x^{2}+7x-30 as \left(x^{2}-3x\right)+\left(10x-30\right).
x\left(x-3\right)+10\left(x-3\right)
Factor out x in the first and 10 in the second group.
\left(x-3\right)\left(x+10\right)
Factor out common term x-3 by using distributive property.
x=3 x=-10
To find equation solutions, solve x-3=0 and x+10=0.
x^{2}+7x-30=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-7±\sqrt{7^{2}-4\left(-30\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 7 for b, and -30 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\left(-30\right)}}{2}
Square 7.
x=\frac{-7±\sqrt{49+120}}{2}
Multiply -4 times -30.
x=\frac{-7±\sqrt{169}}{2}
Add 49 to 120.
x=\frac{-7±13}{2}
Take the square root of 169.
x=\frac{6}{2}
Now solve the equation x=\frac{-7±13}{2} when ± is plus. Add -7 to 13.
x=3
Divide 6 by 2.
x=-\frac{20}{2}
Now solve the equation x=\frac{-7±13}{2} when ± is minus. Subtract 13 from -7.
x=-10
Divide -20 by 2.
x=3 x=-10
The equation is now solved.
x^{2}+7x-30=0
Swap sides so that all variable terms are on the left hand side.
x^{2}+7x=30
Add 30 to both sides. Anything plus zero gives itself.
x^{2}+7x+\left(\frac{7}{2}\right)^{2}=30+\left(\frac{7}{2}\right)^{2}
Divide 7, the coefficient of the x term, by 2 to get \frac{7}{2}. Then add the square of \frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+7x+\frac{49}{4}=30+\frac{49}{4}
Square \frac{7}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+7x+\frac{49}{4}=\frac{169}{4}
Add 30 to \frac{49}{4}.
\left(x+\frac{7}{2}\right)^{2}=\frac{169}{4}
Factor x^{2}+7x+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{2}\right)^{2}}=\sqrt{\frac{169}{4}}
Take the square root of both sides of the equation.
x+\frac{7}{2}=\frac{13}{2} x+\frac{7}{2}=-\frac{13}{2}
Simplify.
x=3 x=-10
Subtract \frac{7}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}