Solve for x
x=\frac{2\sqrt{659}}{51}-\frac{6}{17}\approx 0.653764522
x=-\frac{2\sqrt{659}}{51}-\frac{6}{17}\approx -1.359646875
Graph
Share
Copied to clipboard
x^{2}+\frac{12}{17}x-\frac{8}{9}=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-\frac{12}{17}±\sqrt{\left(\frac{12}{17}\right)^{2}-4\left(-\frac{8}{9}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, \frac{12}{17} for b, and -\frac{8}{9} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{12}{17}±\sqrt{\frac{144}{289}-4\left(-\frac{8}{9}\right)}}{2}
Square \frac{12}{17} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{12}{17}±\sqrt{\frac{144}{289}+\frac{32}{9}}}{2}
Multiply -4 times -\frac{8}{9}.
x=\frac{-\frac{12}{17}±\sqrt{\frac{10544}{2601}}}{2}
Add \frac{144}{289} to \frac{32}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{12}{17}±\frac{4\sqrt{659}}{51}}{2}
Take the square root of \frac{10544}{2601}.
x=\frac{\frac{4\sqrt{659}}{51}-\frac{12}{17}}{2}
Now solve the equation x=\frac{-\frac{12}{17}±\frac{4\sqrt{659}}{51}}{2} when ± is plus. Add -\frac{12}{17} to \frac{4\sqrt{659}}{51}.
x=\frac{2\sqrt{659}}{51}-\frac{6}{17}
Divide -\frac{12}{17}+\frac{4\sqrt{659}}{51} by 2.
x=\frac{-\frac{4\sqrt{659}}{51}-\frac{12}{17}}{2}
Now solve the equation x=\frac{-\frac{12}{17}±\frac{4\sqrt{659}}{51}}{2} when ± is minus. Subtract \frac{4\sqrt{659}}{51} from -\frac{12}{17}.
x=-\frac{2\sqrt{659}}{51}-\frac{6}{17}
Divide -\frac{12}{17}-\frac{4\sqrt{659}}{51} by 2.
x=\frac{2\sqrt{659}}{51}-\frac{6}{17} x=-\frac{2\sqrt{659}}{51}-\frac{6}{17}
The equation is now solved.
x^{2}+\frac{12}{17}x-\frac{8}{9}=0
Swap sides so that all variable terms are on the left hand side.
x^{2}+\frac{12}{17}x=\frac{8}{9}
Add \frac{8}{9} to both sides. Anything plus zero gives itself.
x^{2}+\frac{12}{17}x+\left(\frac{6}{17}\right)^{2}=\frac{8}{9}+\left(\frac{6}{17}\right)^{2}
Divide \frac{12}{17}, the coefficient of the x term, by 2 to get \frac{6}{17}. Then add the square of \frac{6}{17} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{12}{17}x+\frac{36}{289}=\frac{8}{9}+\frac{36}{289}
Square \frac{6}{17} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{12}{17}x+\frac{36}{289}=\frac{2636}{2601}
Add \frac{8}{9} to \frac{36}{289} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{6}{17}\right)^{2}=\frac{2636}{2601}
Factor x^{2}+\frac{12}{17}x+\frac{36}{289}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{6}{17}\right)^{2}}=\sqrt{\frac{2636}{2601}}
Take the square root of both sides of the equation.
x+\frac{6}{17}=\frac{2\sqrt{659}}{51} x+\frac{6}{17}=-\frac{2\sqrt{659}}{51}
Simplify.
x=\frac{2\sqrt{659}}{51}-\frac{6}{17} x=-\frac{2\sqrt{659}}{51}-\frac{6}{17}
Subtract \frac{6}{17} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}