Verify
false
Share
Copied to clipboard
\frac{0\sqrt{1}}{\sqrt{36}}=\sqrt{\frac{36}{81}}\text{ and }\sqrt{\frac{36}{81}}=\frac{0}{9}
Divide 0 by \frac{\sqrt{36}}{\sqrt{1}} by multiplying 0 by the reciprocal of \frac{\sqrt{36}}{\sqrt{1}}.
\frac{0\times 1}{\sqrt{36}}=\sqrt{\frac{36}{81}}\text{ and }\sqrt{\frac{36}{81}}=\frac{0}{9}
Calculate the square root of 1 and get 1.
\frac{0}{\sqrt{36}}=\sqrt{\frac{36}{81}}\text{ and }\sqrt{\frac{36}{81}}=\frac{0}{9}
Multiply 0 and 1 to get 0.
\frac{0}{6}=\sqrt{\frac{36}{81}}\text{ and }\sqrt{\frac{36}{81}}=\frac{0}{9}
Calculate the square root of 36 and get 6.
0=\sqrt{\frac{36}{81}}\text{ and }\sqrt{\frac{36}{81}}=\frac{0}{9}
Zero divided by any non-zero number gives zero.
0=\sqrt{\frac{4}{9}}\text{ and }\sqrt{\frac{36}{81}}=\frac{0}{9}
Reduce the fraction \frac{36}{81} to lowest terms by extracting and canceling out 9.
0=\frac{2}{3}\text{ and }\sqrt{\frac{36}{81}}=\frac{0}{9}
Rewrite the square root of the division \frac{4}{9} as the division of square roots \frac{\sqrt{4}}{\sqrt{9}}. Take the square root of both numerator and denominator.
\text{false}\text{ and }\sqrt{\frac{36}{81}}=\frac{0}{9}
Compare 0 and \frac{2}{3}.
\text{false}\text{ and }\sqrt{\frac{4}{9}}=\frac{0}{9}
Reduce the fraction \frac{36}{81} to lowest terms by extracting and canceling out 9.
\text{false}\text{ and }\frac{2}{3}=\frac{0}{9}
Rewrite the square root of the division \frac{4}{9} as the division of square roots \frac{\sqrt{4}}{\sqrt{9}}. Take the square root of both numerator and denominator.
\text{false}\text{ and }\frac{2}{3}=0
Zero divided by any non-zero number gives zero.
\text{false}\text{ and }\text{false}
Compare \frac{2}{3} and 0.
\text{false}
The conjunction of \text{false} and \text{false} is \text{false}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}