Evaluate
5.3
Factor
\frac{53}{2 \cdot 5} = 5\frac{3}{10} = 5.3
Share
Copied to clipboard
0.5+\frac{3\left(-7\right)}{5}-\left(-1-8\right)
Express \frac{3}{5}\left(-7\right) as a single fraction.
0.5+\frac{-21}{5}-\left(-1-8\right)
Multiply 3 and -7 to get -21.
0.5-\frac{21}{5}-\left(-1-8\right)
Fraction \frac{-21}{5} can be rewritten as -\frac{21}{5} by extracting the negative sign.
\frac{1}{2}-\frac{21}{5}-\left(-1-8\right)
Convert decimal number 0.5 to fraction \frac{5}{10}. Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
\frac{5}{10}-\frac{42}{10}-\left(-1-8\right)
Least common multiple of 2 and 5 is 10. Convert \frac{1}{2} and \frac{21}{5} to fractions with denominator 10.
\frac{5-42}{10}-\left(-1-8\right)
Since \frac{5}{10} and \frac{42}{10} have the same denominator, subtract them by subtracting their numerators.
-\frac{37}{10}-\left(-1-8\right)
Subtract 42 from 5 to get -37.
-\frac{37}{10}-\left(-9\right)
Subtract 8 from -1 to get -9.
-\frac{37}{10}+9
The opposite of -9 is 9.
-\frac{37}{10}+\frac{90}{10}
Convert 9 to fraction \frac{90}{10}.
\frac{-37+90}{10}
Since -\frac{37}{10} and \frac{90}{10} have the same denominator, add them by adding their numerators.
\frac{53}{10}
Add -37 and 90 to get 53.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}