.493 z = 8 ( \cos 1
Solve for z
z=\frac{8000\cos(1)}{493}\approx 8.767583057
Share
Copied to clipboard
0.493z=8\cos(1)
The equation is in standard form.
\frac{0.493z}{0.493}=\frac{8\cos(1)}{0.493}
Divide both sides of the equation by 0.493, which is the same as multiplying both sides by the reciprocal of the fraction.
z=\frac{8\cos(1)}{0.493}
Dividing by 0.493 undoes the multiplication by 0.493.
z=\frac{8000\cos(1)}{493}
Divide 8\cos(1) by 0.493 by multiplying 8\cos(1) by the reciprocal of 0.493.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}