Solve for k
k = \frac{\sqrt{5}}{2} \approx 1.118033989
k = -\frac{\sqrt{5}}{2} \approx -1.118033989
Share
Copied to clipboard
0.2k^{2}=k^{2}-1
Variable k cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by k^{2}.
0.2k^{2}-k^{2}=-1
Subtract k^{2} from both sides.
-0.8k^{2}=-1
Combine 0.2k^{2} and -k^{2} to get -0.8k^{2}.
k^{2}=\frac{-1}{-0.8}
Divide both sides by -0.8.
k^{2}=\frac{-10}{-8}
Expand \frac{-1}{-0.8} by multiplying both numerator and the denominator by 10.
k^{2}=\frac{5}{4}
Reduce the fraction \frac{-10}{-8} to lowest terms by extracting and canceling out -2.
k=\frac{\sqrt{5}}{2} k=-\frac{\sqrt{5}}{2}
Take the square root of both sides of the equation.
0.2k^{2}=k^{2}-1
Variable k cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by k^{2}.
0.2k^{2}-k^{2}=-1
Subtract k^{2} from both sides.
-0.8k^{2}=-1
Combine 0.2k^{2} and -k^{2} to get -0.8k^{2}.
-0.8k^{2}+1=0
Add 1 to both sides.
-\frac{4}{5}k^{2}+1=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
k=\frac{0±\sqrt{0^{2}-4\left(-\frac{4}{5}\right)}}{2\left(-\frac{4}{5}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{4}{5} for a, 0 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{0±\sqrt{-4\left(-\frac{4}{5}\right)}}{2\left(-\frac{4}{5}\right)}
Square 0.
k=\frac{0±\sqrt{\frac{16}{5}}}{2\left(-\frac{4}{5}\right)}
Multiply -4 times -\frac{4}{5}.
k=\frac{0±\frac{4\sqrt{5}}{5}}{2\left(-\frac{4}{5}\right)}
Take the square root of \frac{16}{5}.
k=\frac{0±\frac{4\sqrt{5}}{5}}{-\frac{8}{5}}
Multiply 2 times -\frac{4}{5}.
k=-\frac{\sqrt{5}}{2}
Now solve the equation k=\frac{0±\frac{4\sqrt{5}}{5}}{-\frac{8}{5}} when ± is plus.
k=\frac{\sqrt{5}}{2}
Now solve the equation k=\frac{0±\frac{4\sqrt{5}}{5}}{-\frac{8}{5}} when ± is minus.
k=-\frac{\sqrt{5}}{2} k=\frac{\sqrt{5}}{2}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}