Solve for x
x=0.799375
Graph
Share
Copied to clipboard
0.094+0.25\left(\frac{18.5}{25}+0.01\right)+0.25\left(\frac{6}{16}+0.02\right)+0.4x=0.7
Multiply 0.1 and 0.94 to get 0.094.
0.094+0.25\left(\frac{185}{250}+0.01\right)+0.25\left(\frac{6}{16}+0.02\right)+0.4x=0.7
Expand \frac{18.5}{25} by multiplying both numerator and the denominator by 10.
0.094+0.25\left(\frac{37}{50}+0.01\right)+0.25\left(\frac{6}{16}+0.02\right)+0.4x=0.7
Reduce the fraction \frac{185}{250} to lowest terms by extracting and canceling out 5.
0.094+0.25\left(\frac{37}{50}+\frac{1}{100}\right)+0.25\left(\frac{6}{16}+0.02\right)+0.4x=0.7
Convert decimal number 0.01 to fraction \frac{1}{100}.
0.094+0.25\left(\frac{74}{100}+\frac{1}{100}\right)+0.25\left(\frac{6}{16}+0.02\right)+0.4x=0.7
Least common multiple of 50 and 100 is 100. Convert \frac{37}{50} and \frac{1}{100} to fractions with denominator 100.
0.094+0.25\times \frac{74+1}{100}+0.25\left(\frac{6}{16}+0.02\right)+0.4x=0.7
Since \frac{74}{100} and \frac{1}{100} have the same denominator, add them by adding their numerators.
0.094+0.25\times \frac{75}{100}+0.25\left(\frac{6}{16}+0.02\right)+0.4x=0.7
Add 74 and 1 to get 75.
0.094+0.25\times \frac{3}{4}+0.25\left(\frac{6}{16}+0.02\right)+0.4x=0.7
Reduce the fraction \frac{75}{100} to lowest terms by extracting and canceling out 25.
0.094+\frac{1}{4}\times \frac{3}{4}+0.25\left(\frac{6}{16}+0.02\right)+0.4x=0.7
Convert decimal number 0.25 to fraction \frac{25}{100}. Reduce the fraction \frac{25}{100} to lowest terms by extracting and canceling out 25.
0.094+\frac{1\times 3}{4\times 4}+0.25\left(\frac{6}{16}+0.02\right)+0.4x=0.7
Multiply \frac{1}{4} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
0.094+\frac{3}{16}+0.25\left(\frac{6}{16}+0.02\right)+0.4x=0.7
Do the multiplications in the fraction \frac{1\times 3}{4\times 4}.
\frac{47}{500}+\frac{3}{16}+0.25\left(\frac{6}{16}+0.02\right)+0.4x=0.7
Convert decimal number 0.094 to fraction \frac{94}{1000}. Reduce the fraction \frac{94}{1000} to lowest terms by extracting and canceling out 2.
\frac{188}{2000}+\frac{375}{2000}+0.25\left(\frac{6}{16}+0.02\right)+0.4x=0.7
Least common multiple of 500 and 16 is 2000. Convert \frac{47}{500} and \frac{3}{16} to fractions with denominator 2000.
\frac{188+375}{2000}+0.25\left(\frac{6}{16}+0.02\right)+0.4x=0.7
Since \frac{188}{2000} and \frac{375}{2000} have the same denominator, add them by adding their numerators.
\frac{563}{2000}+0.25\left(\frac{6}{16}+0.02\right)+0.4x=0.7
Add 188 and 375 to get 563.
\frac{563}{2000}+0.25\left(\frac{3}{8}+0.02\right)+0.4x=0.7
Reduce the fraction \frac{6}{16} to lowest terms by extracting and canceling out 2.
\frac{563}{2000}+0.25\left(\frac{3}{8}+\frac{1}{50}\right)+0.4x=0.7
Convert decimal number 0.02 to fraction \frac{2}{100}. Reduce the fraction \frac{2}{100} to lowest terms by extracting and canceling out 2.
\frac{563}{2000}+0.25\left(\frac{75}{200}+\frac{4}{200}\right)+0.4x=0.7
Least common multiple of 8 and 50 is 200. Convert \frac{3}{8} and \frac{1}{50} to fractions with denominator 200.
\frac{563}{2000}+0.25\times \frac{75+4}{200}+0.4x=0.7
Since \frac{75}{200} and \frac{4}{200} have the same denominator, add them by adding their numerators.
\frac{563}{2000}+0.25\times \frac{79}{200}+0.4x=0.7
Add 75 and 4 to get 79.
\frac{563}{2000}+\frac{1}{4}\times \frac{79}{200}+0.4x=0.7
Convert decimal number 0.25 to fraction \frac{25}{100}. Reduce the fraction \frac{25}{100} to lowest terms by extracting and canceling out 25.
\frac{563}{2000}+\frac{1\times 79}{4\times 200}+0.4x=0.7
Multiply \frac{1}{4} times \frac{79}{200} by multiplying numerator times numerator and denominator times denominator.
\frac{563}{2000}+\frac{79}{800}+0.4x=0.7
Do the multiplications in the fraction \frac{1\times 79}{4\times 200}.
\frac{1126}{4000}+\frac{395}{4000}+0.4x=0.7
Least common multiple of 2000 and 800 is 4000. Convert \frac{563}{2000} and \frac{79}{800} to fractions with denominator 4000.
\frac{1126+395}{4000}+0.4x=0.7
Since \frac{1126}{4000} and \frac{395}{4000} have the same denominator, add them by adding their numerators.
\frac{1521}{4000}+0.4x=0.7
Add 1126 and 395 to get 1521.
0.4x=0.7-\frac{1521}{4000}
Subtract \frac{1521}{4000} from both sides.
0.4x=\frac{7}{10}-\frac{1521}{4000}
Convert decimal number 0.7 to fraction \frac{7}{10}.
0.4x=\frac{2800}{4000}-\frac{1521}{4000}
Least common multiple of 10 and 4000 is 4000. Convert \frac{7}{10} and \frac{1521}{4000} to fractions with denominator 4000.
0.4x=\frac{2800-1521}{4000}
Since \frac{2800}{4000} and \frac{1521}{4000} have the same denominator, subtract them by subtracting their numerators.
0.4x=\frac{1279}{4000}
Subtract 1521 from 2800 to get 1279.
x=\frac{\frac{1279}{4000}}{0.4}
Divide both sides by 0.4.
x=\frac{1279}{4000\times 0.4}
Express \frac{\frac{1279}{4000}}{0.4} as a single fraction.
x=\frac{1279}{1600}
Multiply 4000 and 0.4 to get 1600.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}