Solve for x
x=-3
x=1
Graph
Share
Copied to clipboard
\left(-x\right)x+2\left(-x\right)+3=0
Use the distributive property to multiply -x by x+2.
-x^{2}+2\left(-1\right)x+3=0
Multiply x and x to get x^{2}.
-x^{2}-2x+3=0
Multiply 2 and -1 to get -2.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-1\right)\times 3}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -2 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-1\right)\times 3}}{2\left(-1\right)}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4+4\times 3}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-2\right)±\sqrt{4+12}}{2\left(-1\right)}
Multiply 4 times 3.
x=\frac{-\left(-2\right)±\sqrt{16}}{2\left(-1\right)}
Add 4 to 12.
x=\frac{-\left(-2\right)±4}{2\left(-1\right)}
Take the square root of 16.
x=\frac{2±4}{2\left(-1\right)}
The opposite of -2 is 2.
x=\frac{2±4}{-2}
Multiply 2 times -1.
x=\frac{6}{-2}
Now solve the equation x=\frac{2±4}{-2} when ± is plus. Add 2 to 4.
x=-3
Divide 6 by -2.
x=-\frac{2}{-2}
Now solve the equation x=\frac{2±4}{-2} when ± is minus. Subtract 4 from 2.
x=1
Divide -2 by -2.
x=-3 x=1
The equation is now solved.
\left(-x\right)x+2\left(-x\right)+3=0
Use the distributive property to multiply -x by x+2.
\left(-x\right)x+2\left(-x\right)=-3
Subtract 3 from both sides. Anything subtracted from zero gives its negation.
-x^{2}+2\left(-1\right)x=-3
Multiply x and x to get x^{2}.
-x^{2}-2x=-3
Multiply 2 and -1 to get -2.
\frac{-x^{2}-2x}{-1}=-\frac{3}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{2}{-1}\right)x=-\frac{3}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+2x=-\frac{3}{-1}
Divide -2 by -1.
x^{2}+2x=3
Divide -3 by -1.
x^{2}+2x+1^{2}=3+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=3+1
Square 1.
x^{2}+2x+1=4
Add 3 to 1.
\left(x+1\right)^{2}=4
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{4}
Take the square root of both sides of the equation.
x+1=2 x+1=-2
Simplify.
x=1 x=-3
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}