Solve for x (complex solution)
x=2+\sqrt{5}i\approx 2+2.236067977i
x=-\sqrt{5}i+2\approx 2-2.236067977i
Graph
Share
Copied to clipboard
-x+3+\frac{1}{2}x^{2}=x-\frac{3}{2}
Add \frac{1}{2}x^{2} to both sides.
-x+3+\frac{1}{2}x^{2}-x=-\frac{3}{2}
Subtract x from both sides.
-x+3+\frac{1}{2}x^{2}-x+\frac{3}{2}=0
Add \frac{3}{2} to both sides.
-x+\frac{9}{2}+\frac{1}{2}x^{2}-x=0
Add 3 and \frac{3}{2} to get \frac{9}{2}.
-2x+\frac{9}{2}+\frac{1}{2}x^{2}=0
Combine -x and -x to get -2x.
\frac{1}{2}x^{2}-2x+\frac{9}{2}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times \frac{1}{2}\times \frac{9}{2}}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, -2 for b, and \frac{9}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times \frac{1}{2}\times \frac{9}{2}}}{2\times \frac{1}{2}}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4-2\times \frac{9}{2}}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x=\frac{-\left(-2\right)±\sqrt{4-9}}{2\times \frac{1}{2}}
Multiply -2 times \frac{9}{2}.
x=\frac{-\left(-2\right)±\sqrt{-5}}{2\times \frac{1}{2}}
Add 4 to -9.
x=\frac{-\left(-2\right)±\sqrt{5}i}{2\times \frac{1}{2}}
Take the square root of -5.
x=\frac{2±\sqrt{5}i}{2\times \frac{1}{2}}
The opposite of -2 is 2.
x=\frac{2±\sqrt{5}i}{1}
Multiply 2 times \frac{1}{2}.
x=\frac{2+\sqrt{5}i}{1}
Now solve the equation x=\frac{2±\sqrt{5}i}{1} when ± is plus. Add 2 to i\sqrt{5}.
x=2+\sqrt{5}i
Divide 2+i\sqrt{5} by 1.
x=\frac{-\sqrt{5}i+2}{1}
Now solve the equation x=\frac{2±\sqrt{5}i}{1} when ± is minus. Subtract i\sqrt{5} from 2.
x=-\sqrt{5}i+2
Divide 2-i\sqrt{5} by 1.
x=2+\sqrt{5}i x=-\sqrt{5}i+2
The equation is now solved.
-x+3+\frac{1}{2}x^{2}=x-\frac{3}{2}
Add \frac{1}{2}x^{2} to both sides.
-x+3+\frac{1}{2}x^{2}-x=-\frac{3}{2}
Subtract x from both sides.
-x+\frac{1}{2}x^{2}-x=-\frac{3}{2}-3
Subtract 3 from both sides.
-x+\frac{1}{2}x^{2}-x=-\frac{9}{2}
Subtract 3 from -\frac{3}{2} to get -\frac{9}{2}.
-2x+\frac{1}{2}x^{2}=-\frac{9}{2}
Combine -x and -x to get -2x.
\frac{1}{2}x^{2}-2x=-\frac{9}{2}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{1}{2}x^{2}-2x}{\frac{1}{2}}=-\frac{\frac{9}{2}}{\frac{1}{2}}
Multiply both sides by 2.
x^{2}+\left(-\frac{2}{\frac{1}{2}}\right)x=-\frac{\frac{9}{2}}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x^{2}-4x=-\frac{\frac{9}{2}}{\frac{1}{2}}
Divide -2 by \frac{1}{2} by multiplying -2 by the reciprocal of \frac{1}{2}.
x^{2}-4x=-9
Divide -\frac{9}{2} by \frac{1}{2} by multiplying -\frac{9}{2} by the reciprocal of \frac{1}{2}.
x^{2}-4x+\left(-2\right)^{2}=-9+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=-9+4
Square -2.
x^{2}-4x+4=-5
Add -9 to 4.
\left(x-2\right)^{2}=-5
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{-5}
Take the square root of both sides of the equation.
x-2=\sqrt{5}i x-2=-\sqrt{5}i
Simplify.
x=2+\sqrt{5}i x=-\sqrt{5}i+2
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}