Factor
-\left(3x-1\right)^{2}
Evaluate
-\left(3x-1\right)^{2}
Graph
Share
Copied to clipboard
a+b=6 ab=-9\left(-1\right)=9
Factor the expression by grouping. First, the expression needs to be rewritten as -9x^{2}+ax+bx-1. To find a and b, set up a system to be solved.
1,9 3,3
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 9.
1+9=10 3+3=6
Calculate the sum for each pair.
a=3 b=3
The solution is the pair that gives sum 6.
\left(-9x^{2}+3x\right)+\left(3x-1\right)
Rewrite -9x^{2}+6x-1 as \left(-9x^{2}+3x\right)+\left(3x-1\right).
-3x\left(3x-1\right)+3x-1
Factor out -3x in -9x^{2}+3x.
\left(3x-1\right)\left(-3x+1\right)
Factor out common term 3x-1 by using distributive property.
-9x^{2}+6x-1=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-6±\sqrt{6^{2}-4\left(-9\right)\left(-1\right)}}{2\left(-9\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-6±\sqrt{36-4\left(-9\right)\left(-1\right)}}{2\left(-9\right)}
Square 6.
x=\frac{-6±\sqrt{36+36\left(-1\right)}}{2\left(-9\right)}
Multiply -4 times -9.
x=\frac{-6±\sqrt{36-36}}{2\left(-9\right)}
Multiply 36 times -1.
x=\frac{-6±\sqrt{0}}{2\left(-9\right)}
Add 36 to -36.
x=\frac{-6±0}{2\left(-9\right)}
Take the square root of 0.
x=\frac{-6±0}{-18}
Multiply 2 times -9.
-9x^{2}+6x-1=-9\left(x-\frac{1}{3}\right)\left(x-\frac{1}{3}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1}{3} for x_{1} and \frac{1}{3} for x_{2}.
-9x^{2}+6x-1=-9\times \frac{-3x+1}{-3}\left(x-\frac{1}{3}\right)
Subtract \frac{1}{3} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-9x^{2}+6x-1=-9\times \frac{-3x+1}{-3}\times \frac{-3x+1}{-3}
Subtract \frac{1}{3} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-9x^{2}+6x-1=-9\times \frac{\left(-3x+1\right)\left(-3x+1\right)}{-3\left(-3\right)}
Multiply \frac{-3x+1}{-3} times \frac{-3x+1}{-3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
-9x^{2}+6x-1=-9\times \frac{\left(-3x+1\right)\left(-3x+1\right)}{9}
Multiply -3 times -3.
-9x^{2}+6x-1=-\left(-3x+1\right)\left(-3x+1\right)
Cancel out 9, the greatest common factor in -9 and 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}