Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-9x^{2}+12x-3=0
Subtract 3 from both sides.
-3x^{2}+4x-1=0
Divide both sides by 3.
a+b=4 ab=-3\left(-1\right)=3
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -3x^{2}+ax+bx-1. To find a and b, set up a system to be solved.
a=3 b=1
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. The only such pair is the system solution.
\left(-3x^{2}+3x\right)+\left(x-1\right)
Rewrite -3x^{2}+4x-1 as \left(-3x^{2}+3x\right)+\left(x-1\right).
3x\left(-x+1\right)-\left(-x+1\right)
Factor out 3x in the first and -1 in the second group.
\left(-x+1\right)\left(3x-1\right)
Factor out common term -x+1 by using distributive property.
x=1 x=\frac{1}{3}
To find equation solutions, solve -x+1=0 and 3x-1=0.
-9x^{2}+12x=3
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-9x^{2}+12x-3=3-3
Subtract 3 from both sides of the equation.
-9x^{2}+12x-3=0
Subtracting 3 from itself leaves 0.
x=\frac{-12±\sqrt{12^{2}-4\left(-9\right)\left(-3\right)}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, 12 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\left(-9\right)\left(-3\right)}}{2\left(-9\right)}
Square 12.
x=\frac{-12±\sqrt{144+36\left(-3\right)}}{2\left(-9\right)}
Multiply -4 times -9.
x=\frac{-12±\sqrt{144-108}}{2\left(-9\right)}
Multiply 36 times -3.
x=\frac{-12±\sqrt{36}}{2\left(-9\right)}
Add 144 to -108.
x=\frac{-12±6}{2\left(-9\right)}
Take the square root of 36.
x=\frac{-12±6}{-18}
Multiply 2 times -9.
x=-\frac{6}{-18}
Now solve the equation x=\frac{-12±6}{-18} when ± is plus. Add -12 to 6.
x=\frac{1}{3}
Reduce the fraction \frac{-6}{-18} to lowest terms by extracting and canceling out 6.
x=-\frac{18}{-18}
Now solve the equation x=\frac{-12±6}{-18} when ± is minus. Subtract 6 from -12.
x=1
Divide -18 by -18.
x=\frac{1}{3} x=1
The equation is now solved.
-9x^{2}+12x=3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-9x^{2}+12x}{-9}=\frac{3}{-9}
Divide both sides by -9.
x^{2}+\frac{12}{-9}x=\frac{3}{-9}
Dividing by -9 undoes the multiplication by -9.
x^{2}-\frac{4}{3}x=\frac{3}{-9}
Reduce the fraction \frac{12}{-9} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{4}{3}x=-\frac{1}{3}
Reduce the fraction \frac{3}{-9} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{4}{3}x+\left(-\frac{2}{3}\right)^{2}=-\frac{1}{3}+\left(-\frac{2}{3}\right)^{2}
Divide -\frac{4}{3}, the coefficient of the x term, by 2 to get -\frac{2}{3}. Then add the square of -\frac{2}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{4}{3}x+\frac{4}{9}=-\frac{1}{3}+\frac{4}{9}
Square -\frac{2}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{1}{9}
Add -\frac{1}{3} to \frac{4}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{2}{3}\right)^{2}=\frac{1}{9}
Factor x^{2}-\frac{4}{3}x+\frac{4}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2}{3}\right)^{2}}=\sqrt{\frac{1}{9}}
Take the square root of both sides of the equation.
x-\frac{2}{3}=\frac{1}{3} x-\frac{2}{3}=-\frac{1}{3}
Simplify.
x=1 x=\frac{1}{3}
Add \frac{2}{3} to both sides of the equation.