Solve for x
x=\frac{21y}{4}+16
Solve for y
y=\frac{4\left(x-16\right)}{21}
Graph
Share
Copied to clipboard
-8x+128=-42y
Subtract 42y from both sides. Anything subtracted from zero gives its negation.
-8x=-42y-128
Subtract 128 from both sides.
\frac{-8x}{-8}=\frac{-42y-128}{-8}
Divide both sides by -8.
x=\frac{-42y-128}{-8}
Dividing by -8 undoes the multiplication by -8.
x=\frac{21y}{4}+16
Divide -42y-128 by -8.
42y+128=8x
Add 8x to both sides. Anything plus zero gives itself.
42y=8x-128
Subtract 128 from both sides.
\frac{42y}{42}=\frac{8x-128}{42}
Divide both sides by 42.
y=\frac{8x-128}{42}
Dividing by 42 undoes the multiplication by 42.
y=\frac{4x-64}{21}
Divide -128+8x by 42.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}