Solve for x (complex solution)
x=-\frac{3}{2}+\sqrt{5}i\approx -1.5+2.236067977i
x=-\sqrt{5}i-\frac{3}{2}\approx -1.5-2.236067977i
Graph
Share
Copied to clipboard
-8x^{2}-24x-58=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\left(-8\right)\left(-58\right)}}{2\left(-8\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -8 for a, -24 for b, and -58 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-24\right)±\sqrt{576-4\left(-8\right)\left(-58\right)}}{2\left(-8\right)}
Square -24.
x=\frac{-\left(-24\right)±\sqrt{576+32\left(-58\right)}}{2\left(-8\right)}
Multiply -4 times -8.
x=\frac{-\left(-24\right)±\sqrt{576-1856}}{2\left(-8\right)}
Multiply 32 times -58.
x=\frac{-\left(-24\right)±\sqrt{-1280}}{2\left(-8\right)}
Add 576 to -1856.
x=\frac{-\left(-24\right)±16\sqrt{5}i}{2\left(-8\right)}
Take the square root of -1280.
x=\frac{24±16\sqrt{5}i}{2\left(-8\right)}
The opposite of -24 is 24.
x=\frac{24±16\sqrt{5}i}{-16}
Multiply 2 times -8.
x=\frac{24+16\sqrt{5}i}{-16}
Now solve the equation x=\frac{24±16\sqrt{5}i}{-16} when ± is plus. Add 24 to 16i\sqrt{5}.
x=-\sqrt{5}i-\frac{3}{2}
Divide 24+16i\sqrt{5} by -16.
x=\frac{-16\sqrt{5}i+24}{-16}
Now solve the equation x=\frac{24±16\sqrt{5}i}{-16} when ± is minus. Subtract 16i\sqrt{5} from 24.
x=-\frac{3}{2}+\sqrt{5}i
Divide 24-16i\sqrt{5} by -16.
x=-\sqrt{5}i-\frac{3}{2} x=-\frac{3}{2}+\sqrt{5}i
The equation is now solved.
-8x^{2}-24x-58=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-8x^{2}-24x-58-\left(-58\right)=-\left(-58\right)
Add 58 to both sides of the equation.
-8x^{2}-24x=-\left(-58\right)
Subtracting -58 from itself leaves 0.
-8x^{2}-24x=58
Subtract -58 from 0.
\frac{-8x^{2}-24x}{-8}=\frac{58}{-8}
Divide both sides by -8.
x^{2}+\left(-\frac{24}{-8}\right)x=\frac{58}{-8}
Dividing by -8 undoes the multiplication by -8.
x^{2}+3x=\frac{58}{-8}
Divide -24 by -8.
x^{2}+3x=-\frac{29}{4}
Reduce the fraction \frac{58}{-8} to lowest terms by extracting and canceling out 2.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-\frac{29}{4}+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=\frac{-29+9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=-5
Add -\frac{29}{4} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{2}\right)^{2}=-5
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{-5}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\sqrt{5}i x+\frac{3}{2}=-\sqrt{5}i
Simplify.
x=-\frac{3}{2}+\sqrt{5}i x=-\sqrt{5}i-\frac{3}{2}
Subtract \frac{3}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}