Factor
\left(1-9x\right)\left(8x-1\right)
Evaluate
\left(1-9x\right)\left(8x-1\right)
Graph
Share
Copied to clipboard
a+b=17 ab=-72\left(-1\right)=72
Factor the expression by grouping. First, the expression needs to be rewritten as -72x^{2}+ax+bx-1. To find a and b, set up a system to be solved.
1,72 2,36 3,24 4,18 6,12 8,9
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 72.
1+72=73 2+36=38 3+24=27 4+18=22 6+12=18 8+9=17
Calculate the sum for each pair.
a=9 b=8
The solution is the pair that gives sum 17.
\left(-72x^{2}+9x\right)+\left(8x-1\right)
Rewrite -72x^{2}+17x-1 as \left(-72x^{2}+9x\right)+\left(8x-1\right).
-9x\left(8x-1\right)+8x-1
Factor out -9x in -72x^{2}+9x.
\left(8x-1\right)\left(-9x+1\right)
Factor out common term 8x-1 by using distributive property.
-72x^{2}+17x-1=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-17±\sqrt{17^{2}-4\left(-72\right)\left(-1\right)}}{2\left(-72\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-17±\sqrt{289-4\left(-72\right)\left(-1\right)}}{2\left(-72\right)}
Square 17.
x=\frac{-17±\sqrt{289+288\left(-1\right)}}{2\left(-72\right)}
Multiply -4 times -72.
x=\frac{-17±\sqrt{289-288}}{2\left(-72\right)}
Multiply 288 times -1.
x=\frac{-17±\sqrt{1}}{2\left(-72\right)}
Add 289 to -288.
x=\frac{-17±1}{2\left(-72\right)}
Take the square root of 1.
x=\frac{-17±1}{-144}
Multiply 2 times -72.
x=-\frac{16}{-144}
Now solve the equation x=\frac{-17±1}{-144} when ± is plus. Add -17 to 1.
x=\frac{1}{9}
Reduce the fraction \frac{-16}{-144} to lowest terms by extracting and canceling out 16.
x=-\frac{18}{-144}
Now solve the equation x=\frac{-17±1}{-144} when ± is minus. Subtract 1 from -17.
x=\frac{1}{8}
Reduce the fraction \frac{-18}{-144} to lowest terms by extracting and canceling out 18.
-72x^{2}+17x-1=-72\left(x-\frac{1}{9}\right)\left(x-\frac{1}{8}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1}{9} for x_{1} and \frac{1}{8} for x_{2}.
-72x^{2}+17x-1=-72\times \frac{-9x+1}{-9}\left(x-\frac{1}{8}\right)
Subtract \frac{1}{9} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-72x^{2}+17x-1=-72\times \frac{-9x+1}{-9}\times \frac{-8x+1}{-8}
Subtract \frac{1}{8} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-72x^{2}+17x-1=-72\times \frac{\left(-9x+1\right)\left(-8x+1\right)}{-9\left(-8\right)}
Multiply \frac{-9x+1}{-9} times \frac{-8x+1}{-8} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
-72x^{2}+17x-1=-72\times \frac{\left(-9x+1\right)\left(-8x+1\right)}{72}
Multiply -9 times -8.
-72x^{2}+17x-1=-\left(-9x+1\right)\left(-8x+1\right)
Cancel out 72, the greatest common factor in -72 and 72.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}