Solve for x
x = \frac{3 \sqrt{46} + 15}{7} \approx 5.049569993
x=\frac{15-3\sqrt{46}}{7}\approx -0.763855707
Graph
Share
Copied to clipboard
-7x^{2}+30x+27=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-30±\sqrt{30^{2}-4\left(-7\right)\times 27}}{2\left(-7\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -7 for a, 30 for b, and 27 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-30±\sqrt{900-4\left(-7\right)\times 27}}{2\left(-7\right)}
Square 30.
x=\frac{-30±\sqrt{900+28\times 27}}{2\left(-7\right)}
Multiply -4 times -7.
x=\frac{-30±\sqrt{900+756}}{2\left(-7\right)}
Multiply 28 times 27.
x=\frac{-30±\sqrt{1656}}{2\left(-7\right)}
Add 900 to 756.
x=\frac{-30±6\sqrt{46}}{2\left(-7\right)}
Take the square root of 1656.
x=\frac{-30±6\sqrt{46}}{-14}
Multiply 2 times -7.
x=\frac{6\sqrt{46}-30}{-14}
Now solve the equation x=\frac{-30±6\sqrt{46}}{-14} when ± is plus. Add -30 to 6\sqrt{46}.
x=\frac{15-3\sqrt{46}}{7}
Divide -30+6\sqrt{46} by -14.
x=\frac{-6\sqrt{46}-30}{-14}
Now solve the equation x=\frac{-30±6\sqrt{46}}{-14} when ± is minus. Subtract 6\sqrt{46} from -30.
x=\frac{3\sqrt{46}+15}{7}
Divide -30-6\sqrt{46} by -14.
x=\frac{15-3\sqrt{46}}{7} x=\frac{3\sqrt{46}+15}{7}
The equation is now solved.
-7x^{2}+30x+27=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-7x^{2}+30x+27-27=-27
Subtract 27 from both sides of the equation.
-7x^{2}+30x=-27
Subtracting 27 from itself leaves 0.
\frac{-7x^{2}+30x}{-7}=-\frac{27}{-7}
Divide both sides by -7.
x^{2}+\frac{30}{-7}x=-\frac{27}{-7}
Dividing by -7 undoes the multiplication by -7.
x^{2}-\frac{30}{7}x=-\frac{27}{-7}
Divide 30 by -7.
x^{2}-\frac{30}{7}x=\frac{27}{7}
Divide -27 by -7.
x^{2}-\frac{30}{7}x+\left(-\frac{15}{7}\right)^{2}=\frac{27}{7}+\left(-\frac{15}{7}\right)^{2}
Divide -\frac{30}{7}, the coefficient of the x term, by 2 to get -\frac{15}{7}. Then add the square of -\frac{15}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{30}{7}x+\frac{225}{49}=\frac{27}{7}+\frac{225}{49}
Square -\frac{15}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{30}{7}x+\frac{225}{49}=\frac{414}{49}
Add \frac{27}{7} to \frac{225}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{15}{7}\right)^{2}=\frac{414}{49}
Factor x^{2}-\frac{30}{7}x+\frac{225}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{15}{7}\right)^{2}}=\sqrt{\frac{414}{49}}
Take the square root of both sides of the equation.
x-\frac{15}{7}=\frac{3\sqrt{46}}{7} x-\frac{15}{7}=-\frac{3\sqrt{46}}{7}
Simplify.
x=\frac{3\sqrt{46}+15}{7} x=\frac{15-3\sqrt{46}}{7}
Add \frac{15}{7} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}