Evaluate
1
Factor
1
Share
Copied to clipboard
-\frac{7}{2}-3\left(-1.5\right)
Fraction \frac{-7}{2} can be rewritten as -\frac{7}{2} by extracting the negative sign.
-\frac{7}{2}-\left(-4.5\right)
Multiply 3 and -1.5 to get -4.5.
-\frac{7}{2}+4.5
The opposite of -4.5 is 4.5.
-\frac{7}{2}+\frac{9}{2}
Convert decimal number 4.5 to fraction \frac{45}{10}. Reduce the fraction \frac{45}{10} to lowest terms by extracting and canceling out 5.
\frac{-7+9}{2}
Since -\frac{7}{2} and \frac{9}{2} have the same denominator, add them by adding their numerators.
\frac{2}{2}
Add -7 and 9 to get 2.
1
Divide 2 by 2 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}