Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-6.67\times 10^{-11}\times \frac{18x^{2}}{1.5\times 10^{8}}
Multiply x and x to get x^{2}.
-6.67\times \frac{1}{100000000000}\times \frac{18x^{2}}{1.5\times 10^{8}}
Calculate 10 to the power of -11 and get \frac{1}{100000000000}.
-\frac{667}{10000000000000}\times \frac{18x^{2}}{1.5\times 10^{8}}
Multiply -6.67 and \frac{1}{100000000000} to get -\frac{667}{10000000000000}.
-\frac{667}{10000000000000}\times \frac{18x^{2}}{1.5\times 100000000}
Calculate 10 to the power of 8 and get 100000000.
-\frac{667}{10000000000000}\times \frac{18x^{2}}{150000000}
Multiply 1.5 and 100000000 to get 150000000.
-\frac{667}{10000000000000}\times \frac{3}{25000000}x^{2}
Divide 18x^{2} by 150000000 to get \frac{3}{25000000}x^{2}.
-\frac{2001}{250000000000000000000}x^{2}
Multiply -\frac{667}{10000000000000} and \frac{3}{25000000} to get -\frac{2001}{250000000000000000000}.
\frac{\mathrm{d}}{\mathrm{d}x}(-6.67\times 10^{-11}\times \frac{18x^{2}}{1.5\times 10^{8}})
Multiply x and x to get x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(-6.67\times \frac{1}{100000000000}\times \frac{18x^{2}}{1.5\times 10^{8}})
Calculate 10 to the power of -11 and get \frac{1}{100000000000}.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{667}{10000000000000}\times \frac{18x^{2}}{1.5\times 10^{8}})
Multiply -6.67 and \frac{1}{100000000000} to get -\frac{667}{10000000000000}.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{667}{10000000000000}\times \frac{18x^{2}}{1.5\times 100000000})
Calculate 10 to the power of 8 and get 100000000.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{667}{10000000000000}\times \frac{18x^{2}}{150000000})
Multiply 1.5 and 100000000 to get 150000000.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{667}{10000000000000}\times \frac{3}{25000000}x^{2})
Divide 18x^{2} by 150000000 to get \frac{3}{25000000}x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{2001}{250000000000000000000}x^{2})
Multiply -\frac{667}{10000000000000} and \frac{3}{25000000} to get -\frac{2001}{250000000000000000000}.
2\left(-\frac{2001}{250000000000000000000}\right)x^{2-1}
The derivative of ax^{n} is nax^{n-1}.
-\frac{2001}{125000000000000000000}x^{2-1}
Multiply 2 times -\frac{2001}{250000000000000000000}.
-\frac{2001}{125000000000000000000}x^{1}
Subtract 1 from 2.
-\frac{2001}{125000000000000000000}x
For any term t, t^{1}=t.