Factor
-\left(2x+5\right)\left(3x+5\right)
Evaluate
-6x^{2}-25x-25
Graph
Share
Copied to clipboard
a+b=-25 ab=-6\left(-25\right)=150
Factor the expression by grouping. First, the expression needs to be rewritten as -6x^{2}+ax+bx-25. To find a and b, set up a system to be solved.
-1,-150 -2,-75 -3,-50 -5,-30 -6,-25 -10,-15
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 150.
-1-150=-151 -2-75=-77 -3-50=-53 -5-30=-35 -6-25=-31 -10-15=-25
Calculate the sum for each pair.
a=-10 b=-15
The solution is the pair that gives sum -25.
\left(-6x^{2}-10x\right)+\left(-15x-25\right)
Rewrite -6x^{2}-25x-25 as \left(-6x^{2}-10x\right)+\left(-15x-25\right).
2x\left(-3x-5\right)+5\left(-3x-5\right)
Factor out 2x in the first and 5 in the second group.
\left(-3x-5\right)\left(2x+5\right)
Factor out common term -3x-5 by using distributive property.
-6x^{2}-25x-25=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}-4\left(-6\right)\left(-25\right)}}{2\left(-6\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-25\right)±\sqrt{625-4\left(-6\right)\left(-25\right)}}{2\left(-6\right)}
Square -25.
x=\frac{-\left(-25\right)±\sqrt{625+24\left(-25\right)}}{2\left(-6\right)}
Multiply -4 times -6.
x=\frac{-\left(-25\right)±\sqrt{625-600}}{2\left(-6\right)}
Multiply 24 times -25.
x=\frac{-\left(-25\right)±\sqrt{25}}{2\left(-6\right)}
Add 625 to -600.
x=\frac{-\left(-25\right)±5}{2\left(-6\right)}
Take the square root of 25.
x=\frac{25±5}{2\left(-6\right)}
The opposite of -25 is 25.
x=\frac{25±5}{-12}
Multiply 2 times -6.
x=\frac{30}{-12}
Now solve the equation x=\frac{25±5}{-12} when ± is plus. Add 25 to 5.
x=-\frac{5}{2}
Reduce the fraction \frac{30}{-12} to lowest terms by extracting and canceling out 6.
x=\frac{20}{-12}
Now solve the equation x=\frac{25±5}{-12} when ± is minus. Subtract 5 from 25.
x=-\frac{5}{3}
Reduce the fraction \frac{20}{-12} to lowest terms by extracting and canceling out 4.
-6x^{2}-25x-25=-6\left(x-\left(-\frac{5}{2}\right)\right)\left(x-\left(-\frac{5}{3}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{5}{2} for x_{1} and -\frac{5}{3} for x_{2}.
-6x^{2}-25x-25=-6\left(x+\frac{5}{2}\right)\left(x+\frac{5}{3}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
-6x^{2}-25x-25=-6\times \frac{-2x-5}{-2}\left(x+\frac{5}{3}\right)
Add \frac{5}{2} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
-6x^{2}-25x-25=-6\times \frac{-2x-5}{-2}\times \frac{-3x-5}{-3}
Add \frac{5}{3} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
-6x^{2}-25x-25=-6\times \frac{\left(-2x-5\right)\left(-3x-5\right)}{-2\left(-3\right)}
Multiply \frac{-2x-5}{-2} times \frac{-3x-5}{-3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
-6x^{2}-25x-25=-6\times \frac{\left(-2x-5\right)\left(-3x-5\right)}{6}
Multiply -2 times -3.
-6x^{2}-25x-25=-\left(-2x-5\right)\left(-3x-5\right)
Cancel out 6, the greatest common factor in -6 and 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}