Solve for c
c = -\frac{23}{2} = -11\frac{1}{2} = -11.5
Share
Copied to clipboard
-6=\frac{1}{6}+\frac{32}{6}+c
Least common multiple of 6 and 3 is 6. Convert \frac{1}{6} and \frac{16}{3} to fractions with denominator 6.
-6=\frac{1+32}{6}+c
Since \frac{1}{6} and \frac{32}{6} have the same denominator, add them by adding their numerators.
-6=\frac{33}{6}+c
Add 1 and 32 to get 33.
-6=\frac{11}{2}+c
Reduce the fraction \frac{33}{6} to lowest terms by extracting and canceling out 3.
\frac{11}{2}+c=-6
Swap sides so that all variable terms are on the left hand side.
c=-6-\frac{11}{2}
Subtract \frac{11}{2} from both sides.
c=-\frac{12}{2}-\frac{11}{2}
Convert -6 to fraction -\frac{12}{2}.
c=\frac{-12-11}{2}
Since -\frac{12}{2} and \frac{11}{2} have the same denominator, subtract them by subtracting their numerators.
c=-\frac{23}{2}
Subtract 11 from -12 to get -23.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}