Solve for x
x = \frac{\sqrt{81145} - 19}{20} \approx 13.292980727
x=\frac{-\sqrt{81145}-19}{20}\approx -15.192980727
Graph
Share
Copied to clipboard
-50x^{2}-95x+10098=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-95\right)±\sqrt{\left(-95\right)^{2}-4\left(-50\right)\times 10098}}{2\left(-50\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -50 for a, -95 for b, and 10098 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-95\right)±\sqrt{9025-4\left(-50\right)\times 10098}}{2\left(-50\right)}
Square -95.
x=\frac{-\left(-95\right)±\sqrt{9025+200\times 10098}}{2\left(-50\right)}
Multiply -4 times -50.
x=\frac{-\left(-95\right)±\sqrt{9025+2019600}}{2\left(-50\right)}
Multiply 200 times 10098.
x=\frac{-\left(-95\right)±\sqrt{2028625}}{2\left(-50\right)}
Add 9025 to 2019600.
x=\frac{-\left(-95\right)±5\sqrt{81145}}{2\left(-50\right)}
Take the square root of 2028625.
x=\frac{95±5\sqrt{81145}}{2\left(-50\right)}
The opposite of -95 is 95.
x=\frac{95±5\sqrt{81145}}{-100}
Multiply 2 times -50.
x=\frac{5\sqrt{81145}+95}{-100}
Now solve the equation x=\frac{95±5\sqrt{81145}}{-100} when ± is plus. Add 95 to 5\sqrt{81145}.
x=\frac{-\sqrt{81145}-19}{20}
Divide 95+5\sqrt{81145} by -100.
x=\frac{95-5\sqrt{81145}}{-100}
Now solve the equation x=\frac{95±5\sqrt{81145}}{-100} when ± is minus. Subtract 5\sqrt{81145} from 95.
x=\frac{\sqrt{81145}-19}{20}
Divide 95-5\sqrt{81145} by -100.
x=\frac{-\sqrt{81145}-19}{20} x=\frac{\sqrt{81145}-19}{20}
The equation is now solved.
-50x^{2}-95x+10098=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-50x^{2}-95x+10098-10098=-10098
Subtract 10098 from both sides of the equation.
-50x^{2}-95x=-10098
Subtracting 10098 from itself leaves 0.
\frac{-50x^{2}-95x}{-50}=-\frac{10098}{-50}
Divide both sides by -50.
x^{2}+\left(-\frac{95}{-50}\right)x=-\frac{10098}{-50}
Dividing by -50 undoes the multiplication by -50.
x^{2}+\frac{19}{10}x=-\frac{10098}{-50}
Reduce the fraction \frac{-95}{-50} to lowest terms by extracting and canceling out 5.
x^{2}+\frac{19}{10}x=\frac{5049}{25}
Reduce the fraction \frac{-10098}{-50} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{19}{10}x+\left(\frac{19}{20}\right)^{2}=\frac{5049}{25}+\left(\frac{19}{20}\right)^{2}
Divide \frac{19}{10}, the coefficient of the x term, by 2 to get \frac{19}{20}. Then add the square of \frac{19}{20} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{19}{10}x+\frac{361}{400}=\frac{5049}{25}+\frac{361}{400}
Square \frac{19}{20} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{19}{10}x+\frac{361}{400}=\frac{16229}{80}
Add \frac{5049}{25} to \frac{361}{400} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{19}{20}\right)^{2}=\frac{16229}{80}
Factor x^{2}+\frac{19}{10}x+\frac{361}{400}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{19}{20}\right)^{2}}=\sqrt{\frac{16229}{80}}
Take the square root of both sides of the equation.
x+\frac{19}{20}=\frac{\sqrt{81145}}{20} x+\frac{19}{20}=-\frac{\sqrt{81145}}{20}
Simplify.
x=\frac{\sqrt{81145}-19}{20} x=\frac{-\sqrt{81145}-19}{20}
Subtract \frac{19}{20} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}