Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

10\left(-5x^{2}+37x\right)
Factor out 10.
x\left(-5x+37\right)
Consider -5x^{2}+37x. Factor out x.
10x\left(-5x+37\right)
Rewrite the complete factored expression.
-50x^{2}+370x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-370±\sqrt{370^{2}}}{2\left(-50\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-370±370}{2\left(-50\right)}
Take the square root of 370^{2}.
x=\frac{-370±370}{-100}
Multiply 2 times -50.
x=\frac{0}{-100}
Now solve the equation x=\frac{-370±370}{-100} when ± is plus. Add -370 to 370.
x=0
Divide 0 by -100.
x=-\frac{740}{-100}
Now solve the equation x=\frac{-370±370}{-100} when ± is minus. Subtract 370 from -370.
x=\frac{37}{5}
Reduce the fraction \frac{-740}{-100} to lowest terms by extracting and canceling out 20.
-50x^{2}+370x=-50x\left(x-\frac{37}{5}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and \frac{37}{5} for x_{2}.
-50x^{2}+370x=-50x\times \frac{-5x+37}{-5}
Subtract \frac{37}{5} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-50x^{2}+370x=10x\left(-5x+37\right)
Cancel out 5, the greatest common factor in -50 and -5.