Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

5\left(-x^{2}-10x\right)
Factor out 5.
x\left(-x-10\right)
Consider -x^{2}-10x. Factor out x.
5x\left(-x-10\right)
Rewrite the complete factored expression.
-5x^{2}-50x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-50\right)±\sqrt{\left(-50\right)^{2}}}{2\left(-5\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-50\right)±50}{2\left(-5\right)}
Take the square root of \left(-50\right)^{2}.
x=\frac{50±50}{2\left(-5\right)}
The opposite of -50 is 50.
x=\frac{50±50}{-10}
Multiply 2 times -5.
x=\frac{100}{-10}
Now solve the equation x=\frac{50±50}{-10} when ± is plus. Add 50 to 50.
x=-10
Divide 100 by -10.
x=\frac{0}{-10}
Now solve the equation x=\frac{50±50}{-10} when ± is minus. Subtract 50 from 50.
x=0
Divide 0 by -10.
-5x^{2}-50x=-5\left(x-\left(-10\right)\right)x
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -10 for x_{1} and 0 for x_{2}.
-5x^{2}-50x=-5\left(x+10\right)x
Simplify all the expressions of the form p-\left(-q\right) to p+q.