Factor
-\left(5x-9\right)\left(x+6\right)
Evaluate
-\left(5x-9\right)\left(x+6\right)
Graph
Share
Copied to clipboard
a+b=-21 ab=-5\times 54=-270
Factor the expression by grouping. First, the expression needs to be rewritten as -5x^{2}+ax+bx+54. To find a and b, set up a system to be solved.
1,-270 2,-135 3,-90 5,-54 6,-45 9,-30 10,-27 15,-18
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -270.
1-270=-269 2-135=-133 3-90=-87 5-54=-49 6-45=-39 9-30=-21 10-27=-17 15-18=-3
Calculate the sum for each pair.
a=9 b=-30
The solution is the pair that gives sum -21.
\left(-5x^{2}+9x\right)+\left(-30x+54\right)
Rewrite -5x^{2}-21x+54 as \left(-5x^{2}+9x\right)+\left(-30x+54\right).
-x\left(5x-9\right)-6\left(5x-9\right)
Factor out -x in the first and -6 in the second group.
\left(5x-9\right)\left(-x-6\right)
Factor out common term 5x-9 by using distributive property.
-5x^{2}-21x+54=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-21\right)±\sqrt{\left(-21\right)^{2}-4\left(-5\right)\times 54}}{2\left(-5\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-21\right)±\sqrt{441-4\left(-5\right)\times 54}}{2\left(-5\right)}
Square -21.
x=\frac{-\left(-21\right)±\sqrt{441+20\times 54}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-\left(-21\right)±\sqrt{441+1080}}{2\left(-5\right)}
Multiply 20 times 54.
x=\frac{-\left(-21\right)±\sqrt{1521}}{2\left(-5\right)}
Add 441 to 1080.
x=\frac{-\left(-21\right)±39}{2\left(-5\right)}
Take the square root of 1521.
x=\frac{21±39}{2\left(-5\right)}
The opposite of -21 is 21.
x=\frac{21±39}{-10}
Multiply 2 times -5.
x=\frac{60}{-10}
Now solve the equation x=\frac{21±39}{-10} when ± is plus. Add 21 to 39.
x=-6
Divide 60 by -10.
x=-\frac{18}{-10}
Now solve the equation x=\frac{21±39}{-10} when ± is minus. Subtract 39 from 21.
x=\frac{9}{5}
Reduce the fraction \frac{-18}{-10} to lowest terms by extracting and canceling out 2.
-5x^{2}-21x+54=-5\left(x-\left(-6\right)\right)\left(x-\frac{9}{5}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -6 for x_{1} and \frac{9}{5} for x_{2}.
-5x^{2}-21x+54=-5\left(x+6\right)\left(x-\frac{9}{5}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
-5x^{2}-21x+54=-5\left(x+6\right)\times \frac{-5x+9}{-5}
Subtract \frac{9}{5} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-5x^{2}-21x+54=\left(x+6\right)\left(-5x+9\right)
Cancel out 5, the greatest common factor in -5 and 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}