Solve for x
x=10\sqrt{105}+70\approx 172.46950766
x=70-10\sqrt{105}\approx -32.46950766
Graph
Share
Copied to clipboard
-5x^{2}+700x+28000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-700±\sqrt{700^{2}-4\left(-5\right)\times 28000}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, 700 for b, and 28000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-700±\sqrt{490000-4\left(-5\right)\times 28000}}{2\left(-5\right)}
Square 700.
x=\frac{-700±\sqrt{490000+20\times 28000}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-700±\sqrt{490000+560000}}{2\left(-5\right)}
Multiply 20 times 28000.
x=\frac{-700±\sqrt{1050000}}{2\left(-5\right)}
Add 490000 to 560000.
x=\frac{-700±100\sqrt{105}}{2\left(-5\right)}
Take the square root of 1050000.
x=\frac{-700±100\sqrt{105}}{-10}
Multiply 2 times -5.
x=\frac{100\sqrt{105}-700}{-10}
Now solve the equation x=\frac{-700±100\sqrt{105}}{-10} when ± is plus. Add -700 to 100\sqrt{105}.
x=70-10\sqrt{105}
Divide -700+100\sqrt{105} by -10.
x=\frac{-100\sqrt{105}-700}{-10}
Now solve the equation x=\frac{-700±100\sqrt{105}}{-10} when ± is minus. Subtract 100\sqrt{105} from -700.
x=10\sqrt{105}+70
Divide -700-100\sqrt{105} by -10.
x=70-10\sqrt{105} x=10\sqrt{105}+70
The equation is now solved.
-5x^{2}+700x+28000=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-5x^{2}+700x+28000-28000=-28000
Subtract 28000 from both sides of the equation.
-5x^{2}+700x=-28000
Subtracting 28000 from itself leaves 0.
\frac{-5x^{2}+700x}{-5}=-\frac{28000}{-5}
Divide both sides by -5.
x^{2}+\frac{700}{-5}x=-\frac{28000}{-5}
Dividing by -5 undoes the multiplication by -5.
x^{2}-140x=-\frac{28000}{-5}
Divide 700 by -5.
x^{2}-140x=5600
Divide -28000 by -5.
x^{2}-140x+\left(-70\right)^{2}=5600+\left(-70\right)^{2}
Divide -140, the coefficient of the x term, by 2 to get -70. Then add the square of -70 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-140x+4900=5600+4900
Square -70.
x^{2}-140x+4900=10500
Add 5600 to 4900.
\left(x-70\right)^{2}=10500
Factor x^{2}-140x+4900. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-70\right)^{2}}=\sqrt{10500}
Take the square root of both sides of the equation.
x-70=10\sqrt{105} x-70=-10\sqrt{105}
Simplify.
x=10\sqrt{105}+70 x=70-10\sqrt{105}
Add 70 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}