Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

5\left(-x^{2}+6x-9\right)
Factor out 5.
a+b=6 ab=-\left(-9\right)=9
Consider -x^{2}+6x-9. Factor the expression by grouping. First, the expression needs to be rewritten as -x^{2}+ax+bx-9. To find a and b, set up a system to be solved.
1,9 3,3
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 9.
1+9=10 3+3=6
Calculate the sum for each pair.
a=3 b=3
The solution is the pair that gives sum 6.
\left(-x^{2}+3x\right)+\left(3x-9\right)
Rewrite -x^{2}+6x-9 as \left(-x^{2}+3x\right)+\left(3x-9\right).
-x\left(x-3\right)+3\left(x-3\right)
Factor out -x in the first and 3 in the second group.
\left(x-3\right)\left(-x+3\right)
Factor out common term x-3 by using distributive property.
5\left(x-3\right)\left(-x+3\right)
Rewrite the complete factored expression.
-5x^{2}+30x-45=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-30±\sqrt{30^{2}-4\left(-5\right)\left(-45\right)}}{2\left(-5\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-30±\sqrt{900-4\left(-5\right)\left(-45\right)}}{2\left(-5\right)}
Square 30.
x=\frac{-30±\sqrt{900+20\left(-45\right)}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-30±\sqrt{900-900}}{2\left(-5\right)}
Multiply 20 times -45.
x=\frac{-30±\sqrt{0}}{2\left(-5\right)}
Add 900 to -900.
x=\frac{-30±0}{2\left(-5\right)}
Take the square root of 0.
x=\frac{-30±0}{-10}
Multiply 2 times -5.
-5x^{2}+30x-45=-5\left(x-3\right)\left(x-3\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 3 for x_{1} and 3 for x_{2}.