Factor
-5\left(x-6\right)\left(x+2\right)
Evaluate
-5\left(x-6\right)\left(x+2\right)
Graph
Share
Copied to clipboard
5\left(-x^{2}+4x+12\right)
Factor out 5.
a+b=4 ab=-12=-12
Consider -x^{2}+4x+12. Factor the expression by grouping. First, the expression needs to be rewritten as -x^{2}+ax+bx+12. To find a and b, set up a system to be solved.
-1,12 -2,6 -3,4
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -12.
-1+12=11 -2+6=4 -3+4=1
Calculate the sum for each pair.
a=6 b=-2
The solution is the pair that gives sum 4.
\left(-x^{2}+6x\right)+\left(-2x+12\right)
Rewrite -x^{2}+4x+12 as \left(-x^{2}+6x\right)+\left(-2x+12\right).
-x\left(x-6\right)-2\left(x-6\right)
Factor out -x in the first and -2 in the second group.
\left(x-6\right)\left(-x-2\right)
Factor out common term x-6 by using distributive property.
5\left(x-6\right)\left(-x-2\right)
Rewrite the complete factored expression.
-5x^{2}+20x+60=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-20±\sqrt{20^{2}-4\left(-5\right)\times 60}}{2\left(-5\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-20±\sqrt{400-4\left(-5\right)\times 60}}{2\left(-5\right)}
Square 20.
x=\frac{-20±\sqrt{400+20\times 60}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-20±\sqrt{400+1200}}{2\left(-5\right)}
Multiply 20 times 60.
x=\frac{-20±\sqrt{1600}}{2\left(-5\right)}
Add 400 to 1200.
x=\frac{-20±40}{2\left(-5\right)}
Take the square root of 1600.
x=\frac{-20±40}{-10}
Multiply 2 times -5.
x=\frac{20}{-10}
Now solve the equation x=\frac{-20±40}{-10} when ± is plus. Add -20 to 40.
x=-2
Divide 20 by -10.
x=-\frac{60}{-10}
Now solve the equation x=\frac{-20±40}{-10} when ± is minus. Subtract 40 from -20.
x=6
Divide -60 by -10.
-5x^{2}+20x+60=-5\left(x-\left(-2\right)\right)\left(x-6\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -2 for x_{1} and 6 for x_{2}.
-5x^{2}+20x+60=-5\left(x+2\right)\left(x-6\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}