Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

-49t^{2}+102t+100=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
t=\frac{-102±\sqrt{102^{2}-4\left(-49\right)\times 100}}{2\left(-49\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-102±\sqrt{10404-4\left(-49\right)\times 100}}{2\left(-49\right)}
Square 102.
t=\frac{-102±\sqrt{10404+196\times 100}}{2\left(-49\right)}
Multiply -4 times -49.
t=\frac{-102±\sqrt{10404+19600}}{2\left(-49\right)}
Multiply 196 times 100.
t=\frac{-102±\sqrt{30004}}{2\left(-49\right)}
Add 10404 to 19600.
t=\frac{-102±2\sqrt{7501}}{2\left(-49\right)}
Take the square root of 30004.
t=\frac{-102±2\sqrt{7501}}{-98}
Multiply 2 times -49.
t=\frac{2\sqrt{7501}-102}{-98}
Now solve the equation t=\frac{-102±2\sqrt{7501}}{-98} when ± is plus. Add -102 to 2\sqrt{7501}.
t=\frac{51-\sqrt{7501}}{49}
Divide -102+2\sqrt{7501} by -98.
t=\frac{-2\sqrt{7501}-102}{-98}
Now solve the equation t=\frac{-102±2\sqrt{7501}}{-98} when ± is minus. Subtract 2\sqrt{7501} from -102.
t=\frac{\sqrt{7501}+51}{49}
Divide -102-2\sqrt{7501} by -98.
-49t^{2}+102t+100=-49\left(t-\frac{51-\sqrt{7501}}{49}\right)\left(t-\frac{\sqrt{7501}+51}{49}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{51-\sqrt{7501}}{49} for x_{1} and \frac{51+\sqrt{7501}}{49} for x_{2}.