Factor
-49\left(t-\frac{51-\sqrt{7501}}{49}\right)\left(t-\frac{\sqrt{7501}+51}{49}\right)
Evaluate
100+102t-49t^{2}
Share
Copied to clipboard
-49t^{2}+102t+100=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
t=\frac{-102±\sqrt{102^{2}-4\left(-49\right)\times 100}}{2\left(-49\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-102±\sqrt{10404-4\left(-49\right)\times 100}}{2\left(-49\right)}
Square 102.
t=\frac{-102±\sqrt{10404+196\times 100}}{2\left(-49\right)}
Multiply -4 times -49.
t=\frac{-102±\sqrt{10404+19600}}{2\left(-49\right)}
Multiply 196 times 100.
t=\frac{-102±\sqrt{30004}}{2\left(-49\right)}
Add 10404 to 19600.
t=\frac{-102±2\sqrt{7501}}{2\left(-49\right)}
Take the square root of 30004.
t=\frac{-102±2\sqrt{7501}}{-98}
Multiply 2 times -49.
t=\frac{2\sqrt{7501}-102}{-98}
Now solve the equation t=\frac{-102±2\sqrt{7501}}{-98} when ± is plus. Add -102 to 2\sqrt{7501}.
t=\frac{51-\sqrt{7501}}{49}
Divide -102+2\sqrt{7501} by -98.
t=\frac{-2\sqrt{7501}-102}{-98}
Now solve the equation t=\frac{-102±2\sqrt{7501}}{-98} when ± is minus. Subtract 2\sqrt{7501} from -102.
t=\frac{\sqrt{7501}+51}{49}
Divide -102-2\sqrt{7501} by -98.
-49t^{2}+102t+100=-49\left(t-\frac{51-\sqrt{7501}}{49}\right)\left(t-\frac{\sqrt{7501}+51}{49}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{51-\sqrt{7501}}{49} for x_{1} and \frac{51+\sqrt{7501}}{49} for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}