Factor
\left(1-x\right)\left(4x+9\right)
Evaluate
\left(1-x\right)\left(4x+9\right)
Graph
Share
Copied to clipboard
a+b=-5 ab=-4\times 9=-36
Factor the expression by grouping. First, the expression needs to be rewritten as -4x^{2}+ax+bx+9. To find a and b, set up a system to be solved.
1,-36 2,-18 3,-12 4,-9 6,-6
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -36.
1-36=-35 2-18=-16 3-12=-9 4-9=-5 6-6=0
Calculate the sum for each pair.
a=4 b=-9
The solution is the pair that gives sum -5.
\left(-4x^{2}+4x\right)+\left(-9x+9\right)
Rewrite -4x^{2}-5x+9 as \left(-4x^{2}+4x\right)+\left(-9x+9\right).
4x\left(-x+1\right)+9\left(-x+1\right)
Factor out 4x in the first and 9 in the second group.
\left(-x+1\right)\left(4x+9\right)
Factor out common term -x+1 by using distributive property.
-4x^{2}-5x+9=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-4\right)\times 9}}{2\left(-4\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-4\right)\times 9}}{2\left(-4\right)}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25+16\times 9}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-\left(-5\right)±\sqrt{25+144}}{2\left(-4\right)}
Multiply 16 times 9.
x=\frac{-\left(-5\right)±\sqrt{169}}{2\left(-4\right)}
Add 25 to 144.
x=\frac{-\left(-5\right)±13}{2\left(-4\right)}
Take the square root of 169.
x=\frac{5±13}{2\left(-4\right)}
The opposite of -5 is 5.
x=\frac{5±13}{-8}
Multiply 2 times -4.
x=\frac{18}{-8}
Now solve the equation x=\frac{5±13}{-8} when ± is plus. Add 5 to 13.
x=-\frac{9}{4}
Reduce the fraction \frac{18}{-8} to lowest terms by extracting and canceling out 2.
x=-\frac{8}{-8}
Now solve the equation x=\frac{5±13}{-8} when ± is minus. Subtract 13 from 5.
x=1
Divide -8 by -8.
-4x^{2}-5x+9=-4\left(x-\left(-\frac{9}{4}\right)\right)\left(x-1\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{9}{4} for x_{1} and 1 for x_{2}.
-4x^{2}-5x+9=-4\left(x+\frac{9}{4}\right)\left(x-1\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
-4x^{2}-5x+9=-4\times \frac{-4x-9}{-4}\left(x-1\right)
Add \frac{9}{4} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
-4x^{2}-5x+9=\left(-4x-9\right)\left(x-1\right)
Cancel out 4, the greatest common factor in -4 and 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}