Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=7 ab=-4\times 2=-8
Factor the expression by grouping. First, the expression needs to be rewritten as -4x^{2}+ax+bx+2. To find a and b, set up a system to be solved.
-1,8 -2,4
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -8.
-1+8=7 -2+4=2
Calculate the sum for each pair.
a=8 b=-1
The solution is the pair that gives sum 7.
\left(-4x^{2}+8x\right)+\left(-x+2\right)
Rewrite -4x^{2}+7x+2 as \left(-4x^{2}+8x\right)+\left(-x+2\right).
4x\left(-x+2\right)-x+2
Factor out 4x in -4x^{2}+8x.
\left(-x+2\right)\left(4x+1\right)
Factor out common term -x+2 by using distributive property.
-4x^{2}+7x+2=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-7±\sqrt{7^{2}-4\left(-4\right)\times 2}}{2\left(-4\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-7±\sqrt{49-4\left(-4\right)\times 2}}{2\left(-4\right)}
Square 7.
x=\frac{-7±\sqrt{49+16\times 2}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-7±\sqrt{49+32}}{2\left(-4\right)}
Multiply 16 times 2.
x=\frac{-7±\sqrt{81}}{2\left(-4\right)}
Add 49 to 32.
x=\frac{-7±9}{2\left(-4\right)}
Take the square root of 81.
x=\frac{-7±9}{-8}
Multiply 2 times -4.
x=\frac{2}{-8}
Now solve the equation x=\frac{-7±9}{-8} when ± is plus. Add -7 to 9.
x=-\frac{1}{4}
Reduce the fraction \frac{2}{-8} to lowest terms by extracting and canceling out 2.
x=-\frac{16}{-8}
Now solve the equation x=\frac{-7±9}{-8} when ± is minus. Subtract 9 from -7.
x=2
Divide -16 by -8.
-4x^{2}+7x+2=-4\left(x-\left(-\frac{1}{4}\right)\right)\left(x-2\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{1}{4} for x_{1} and 2 for x_{2}.
-4x^{2}+7x+2=-4\left(x+\frac{1}{4}\right)\left(x-2\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
-4x^{2}+7x+2=-4\times \frac{-4x-1}{-4}\left(x-2\right)
Add \frac{1}{4} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
-4x^{2}+7x+2=\left(-4x-1\right)\left(x-2\right)
Cancel out 4, the greatest common factor in -4 and 4.