Solve for x
x = \frac{\sqrt{65} + 5}{4} \approx 3.265564437
x=\frac{5-\sqrt{65}}{4}\approx -0.765564437
Graph
Share
Copied to clipboard
-4x^{2}+10x+10=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-10±\sqrt{10^{2}-4\left(-4\right)\times 10}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 10 for b, and 10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\left(-4\right)\times 10}}{2\left(-4\right)}
Square 10.
x=\frac{-10±\sqrt{100+16\times 10}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-10±\sqrt{100+160}}{2\left(-4\right)}
Multiply 16 times 10.
x=\frac{-10±\sqrt{260}}{2\left(-4\right)}
Add 100 to 160.
x=\frac{-10±2\sqrt{65}}{2\left(-4\right)}
Take the square root of 260.
x=\frac{-10±2\sqrt{65}}{-8}
Multiply 2 times -4.
x=\frac{2\sqrt{65}-10}{-8}
Now solve the equation x=\frac{-10±2\sqrt{65}}{-8} when ± is plus. Add -10 to 2\sqrt{65}.
x=\frac{5-\sqrt{65}}{4}
Divide -10+2\sqrt{65} by -8.
x=\frac{-2\sqrt{65}-10}{-8}
Now solve the equation x=\frac{-10±2\sqrt{65}}{-8} when ± is minus. Subtract 2\sqrt{65} from -10.
x=\frac{\sqrt{65}+5}{4}
Divide -10-2\sqrt{65} by -8.
x=\frac{5-\sqrt{65}}{4} x=\frac{\sqrt{65}+5}{4}
The equation is now solved.
-4x^{2}+10x+10=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-4x^{2}+10x+10-10=-10
Subtract 10 from both sides of the equation.
-4x^{2}+10x=-10
Subtracting 10 from itself leaves 0.
\frac{-4x^{2}+10x}{-4}=-\frac{10}{-4}
Divide both sides by -4.
x^{2}+\frac{10}{-4}x=-\frac{10}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}-\frac{5}{2}x=-\frac{10}{-4}
Reduce the fraction \frac{10}{-4} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{5}{2}x=\frac{5}{2}
Reduce the fraction \frac{-10}{-4} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{5}{2}x+\left(-\frac{5}{4}\right)^{2}=\frac{5}{2}+\left(-\frac{5}{4}\right)^{2}
Divide -\frac{5}{2}, the coefficient of the x term, by 2 to get -\frac{5}{4}. Then add the square of -\frac{5}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{5}{2}+\frac{25}{16}
Square -\frac{5}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{65}{16}
Add \frac{5}{2} to \frac{25}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{4}\right)^{2}=\frac{65}{16}
Factor x^{2}-\frac{5}{2}x+\frac{25}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{4}\right)^{2}}=\sqrt{\frac{65}{16}}
Take the square root of both sides of the equation.
x-\frac{5}{4}=\frac{\sqrt{65}}{4} x-\frac{5}{4}=-\frac{\sqrt{65}}{4}
Simplify.
x=\frac{\sqrt{65}+5}{4} x=\frac{5-\sqrt{65}}{4}
Add \frac{5}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}