Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=12 ab=-36\left(-1\right)=36
Factor the expression by grouping. First, the expression needs to be rewritten as -36x^{2}+ax+bx-1. To find a and b, set up a system to be solved.
1,36 2,18 3,12 4,9 6,6
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 36.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
Calculate the sum for each pair.
a=6 b=6
The solution is the pair that gives sum 12.
\left(-36x^{2}+6x\right)+\left(6x-1\right)
Rewrite -36x^{2}+12x-1 as \left(-36x^{2}+6x\right)+\left(6x-1\right).
-6x\left(6x-1\right)+6x-1
Factor out -6x in -36x^{2}+6x.
\left(6x-1\right)\left(-6x+1\right)
Factor out common term 6x-1 by using distributive property.
-36x^{2}+12x-1=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-12±\sqrt{12^{2}-4\left(-36\right)\left(-1\right)}}{2\left(-36\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12±\sqrt{144-4\left(-36\right)\left(-1\right)}}{2\left(-36\right)}
Square 12.
x=\frac{-12±\sqrt{144+144\left(-1\right)}}{2\left(-36\right)}
Multiply -4 times -36.
x=\frac{-12±\sqrt{144-144}}{2\left(-36\right)}
Multiply 144 times -1.
x=\frac{-12±\sqrt{0}}{2\left(-36\right)}
Add 144 to -144.
x=\frac{-12±0}{2\left(-36\right)}
Take the square root of 0.
x=\frac{-12±0}{-72}
Multiply 2 times -36.
-36x^{2}+12x-1=-36\left(x-\frac{1}{6}\right)\left(x-\frac{1}{6}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1}{6} for x_{1} and \frac{1}{6} for x_{2}.
-36x^{2}+12x-1=-36\times \frac{-6x+1}{-6}\left(x-\frac{1}{6}\right)
Subtract \frac{1}{6} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-36x^{2}+12x-1=-36\times \frac{-6x+1}{-6}\times \frac{-6x+1}{-6}
Subtract \frac{1}{6} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-36x^{2}+12x-1=-36\times \frac{\left(-6x+1\right)\left(-6x+1\right)}{-6\left(-6\right)}
Multiply \frac{-6x+1}{-6} times \frac{-6x+1}{-6} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
-36x^{2}+12x-1=-36\times \frac{\left(-6x+1\right)\left(-6x+1\right)}{36}
Multiply -6 times -6.
-36x^{2}+12x-1=-\left(-6x+1\right)\left(-6x+1\right)
Cancel out 36, the greatest common factor in -36 and 36.