Factor
-3\left(x+1\right)^{2}
Evaluate
-3\left(x+1\right)^{2}
Graph
Share
Copied to clipboard
3\left(-x^{2}-2x-1\right)
Factor out 3.
a+b=-2 ab=-\left(-1\right)=1
Consider -x^{2}-2x-1. Factor the expression by grouping. First, the expression needs to be rewritten as -x^{2}+ax+bx-1. To find a and b, set up a system to be solved.
a=-1 b=-1
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. The only such pair is the system solution.
\left(-x^{2}-x\right)+\left(-x-1\right)
Rewrite -x^{2}-2x-1 as \left(-x^{2}-x\right)+\left(-x-1\right).
-x\left(x+1\right)-\left(x+1\right)
Factor out -x in the first and -1 in the second group.
\left(x+1\right)\left(-x-1\right)
Factor out common term x+1 by using distributive property.
3\left(x+1\right)\left(-x-1\right)
Rewrite the complete factored expression.
-3x^{2}-6x-3=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-3\right)\left(-3\right)}}{2\left(-3\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-3\right)\left(-3\right)}}{2\left(-3\right)}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36+12\left(-3\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-6\right)±\sqrt{36-36}}{2\left(-3\right)}
Multiply 12 times -3.
x=\frac{-\left(-6\right)±\sqrt{0}}{2\left(-3\right)}
Add 36 to -36.
x=\frac{-\left(-6\right)±0}{2\left(-3\right)}
Take the square root of 0.
x=\frac{6±0}{2\left(-3\right)}
The opposite of -6 is 6.
x=\frac{6±0}{-6}
Multiply 2 times -3.
-3x^{2}-6x-3=-3\left(x-\left(-1\right)\right)\left(x-\left(-1\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -1 for x_{1} and -1 for x_{2}.
-3x^{2}-6x-3=-3\left(x+1\right)\left(x+1\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}