Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\left(-x^{2}-2x-1\right)
Factor out 3.
a+b=-2 ab=-\left(-1\right)=1
Consider -x^{2}-2x-1. Factor the expression by grouping. First, the expression needs to be rewritten as -x^{2}+ax+bx-1. To find a and b, set up a system to be solved.
a=-1 b=-1
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. The only such pair is the system solution.
\left(-x^{2}-x\right)+\left(-x-1\right)
Rewrite -x^{2}-2x-1 as \left(-x^{2}-x\right)+\left(-x-1\right).
-x\left(x+1\right)-\left(x+1\right)
Factor out -x in the first and -1 in the second group.
\left(x+1\right)\left(-x-1\right)
Factor out common term x+1 by using distributive property.
3\left(x+1\right)\left(-x-1\right)
Rewrite the complete factored expression.
-3x^{2}-6x-3=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-3\right)\left(-3\right)}}{2\left(-3\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-3\right)\left(-3\right)}}{2\left(-3\right)}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36+12\left(-3\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-6\right)±\sqrt{36-36}}{2\left(-3\right)}
Multiply 12 times -3.
x=\frac{-\left(-6\right)±\sqrt{0}}{2\left(-3\right)}
Add 36 to -36.
x=\frac{-\left(-6\right)±0}{2\left(-3\right)}
Take the square root of 0.
x=\frac{6±0}{2\left(-3\right)}
The opposite of -6 is 6.
x=\frac{6±0}{-6}
Multiply 2 times -3.
-3x^{2}-6x-3=-3\left(x-\left(-1\right)\right)\left(x-\left(-1\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -1 for x_{1} and -1 for x_{2}.
-3x^{2}-6x-3=-3\left(x+1\right)\left(x+1\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.