Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-3x^{2}-2x+10=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-3\right)\times 10}}{2\left(-3\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-3\right)\times 10}}{2\left(-3\right)}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4+12\times 10}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-2\right)±\sqrt{4+120}}{2\left(-3\right)}
Multiply 12 times 10.
x=\frac{-\left(-2\right)±\sqrt{124}}{2\left(-3\right)}
Add 4 to 120.
x=\frac{-\left(-2\right)±2\sqrt{31}}{2\left(-3\right)}
Take the square root of 124.
x=\frac{2±2\sqrt{31}}{2\left(-3\right)}
The opposite of -2 is 2.
x=\frac{2±2\sqrt{31}}{-6}
Multiply 2 times -3.
x=\frac{2\sqrt{31}+2}{-6}
Now solve the equation x=\frac{2±2\sqrt{31}}{-6} when ± is plus. Add 2 to 2\sqrt{31}.
x=\frac{-\sqrt{31}-1}{3}
Divide 2+2\sqrt{31} by -6.
x=\frac{2-2\sqrt{31}}{-6}
Now solve the equation x=\frac{2±2\sqrt{31}}{-6} when ± is minus. Subtract 2\sqrt{31} from 2.
x=\frac{\sqrt{31}-1}{3}
Divide 2-2\sqrt{31} by -6.
-3x^{2}-2x+10=-3\left(x-\frac{-\sqrt{31}-1}{3}\right)\left(x-\frac{\sqrt{31}-1}{3}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-1-\sqrt{31}}{3} for x_{1} and \frac{-1+\sqrt{31}}{3} for x_{2}.