Solve for x (complex solution)
x=\frac{-\sqrt{23}i+1}{6}\approx 0.166666667-0.799305254i
x=\frac{1+\sqrt{23}i}{6}\approx 0.166666667+0.799305254i
Graph
Share
Copied to clipboard
-3x^{2}+x-2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1^{2}-4\left(-3\right)\left(-2\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 1 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-3\right)\left(-2\right)}}{2\left(-3\right)}
Square 1.
x=\frac{-1±\sqrt{1+12\left(-2\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-1±\sqrt{1-24}}{2\left(-3\right)}
Multiply 12 times -2.
x=\frac{-1±\sqrt{-23}}{2\left(-3\right)}
Add 1 to -24.
x=\frac{-1±\sqrt{23}i}{2\left(-3\right)}
Take the square root of -23.
x=\frac{-1±\sqrt{23}i}{-6}
Multiply 2 times -3.
x=\frac{-1+\sqrt{23}i}{-6}
Now solve the equation x=\frac{-1±\sqrt{23}i}{-6} when ± is plus. Add -1 to i\sqrt{23}.
x=\frac{-\sqrt{23}i+1}{6}
Divide -1+i\sqrt{23} by -6.
x=\frac{-\sqrt{23}i-1}{-6}
Now solve the equation x=\frac{-1±\sqrt{23}i}{-6} when ± is minus. Subtract i\sqrt{23} from -1.
x=\frac{1+\sqrt{23}i}{6}
Divide -1-i\sqrt{23} by -6.
x=\frac{-\sqrt{23}i+1}{6} x=\frac{1+\sqrt{23}i}{6}
The equation is now solved.
-3x^{2}+x-2=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-3x^{2}+x-2-\left(-2\right)=-\left(-2\right)
Add 2 to both sides of the equation.
-3x^{2}+x=-\left(-2\right)
Subtracting -2 from itself leaves 0.
-3x^{2}+x=2
Subtract -2 from 0.
\frac{-3x^{2}+x}{-3}=\frac{2}{-3}
Divide both sides by -3.
x^{2}+\frac{1}{-3}x=\frac{2}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-\frac{1}{3}x=\frac{2}{-3}
Divide 1 by -3.
x^{2}-\frac{1}{3}x=-\frac{2}{3}
Divide 2 by -3.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=-\frac{2}{3}+\left(-\frac{1}{6}\right)^{2}
Divide -\frac{1}{3}, the coefficient of the x term, by 2 to get -\frac{1}{6}. Then add the square of -\frac{1}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{3}x+\frac{1}{36}=-\frac{2}{3}+\frac{1}{36}
Square -\frac{1}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{3}x+\frac{1}{36}=-\frac{23}{36}
Add -\frac{2}{3} to \frac{1}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{6}\right)^{2}=-\frac{23}{36}
Factor x^{2}-\frac{1}{3}x+\frac{1}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{-\frac{23}{36}}
Take the square root of both sides of the equation.
x-\frac{1}{6}=\frac{\sqrt{23}i}{6} x-\frac{1}{6}=-\frac{\sqrt{23}i}{6}
Simplify.
x=\frac{1+\sqrt{23}i}{6} x=\frac{-\sqrt{23}i+1}{6}
Add \frac{1}{6} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}