Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-3x^{2}+7x+12=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-7±\sqrt{7^{2}-4\left(-3\right)\times 12}}{2\left(-3\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-7±\sqrt{49-4\left(-3\right)\times 12}}{2\left(-3\right)}
Square 7.
x=\frac{-7±\sqrt{49+12\times 12}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-7±\sqrt{49+144}}{2\left(-3\right)}
Multiply 12 times 12.
x=\frac{-7±\sqrt{193}}{2\left(-3\right)}
Add 49 to 144.
x=\frac{-7±\sqrt{193}}{-6}
Multiply 2 times -3.
x=\frac{\sqrt{193}-7}{-6}
Now solve the equation x=\frac{-7±\sqrt{193}}{-6} when ± is plus. Add -7 to \sqrt{193}.
x=\frac{7-\sqrt{193}}{6}
Divide -7+\sqrt{193} by -6.
x=\frac{-\sqrt{193}-7}{-6}
Now solve the equation x=\frac{-7±\sqrt{193}}{-6} when ± is minus. Subtract \sqrt{193} from -7.
x=\frac{\sqrt{193}+7}{6}
Divide -7-\sqrt{193} by -6.
-3x^{2}+7x+12=-3\left(x-\frac{7-\sqrt{193}}{6}\right)\left(x-\frac{\sqrt{193}+7}{6}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{7-\sqrt{193}}{6} for x_{1} and \frac{7+\sqrt{193}}{6} for x_{2}.