Solve for x
x = -\frac{16}{3} = -5\frac{1}{3} \approx -5.333333333
x=6
Graph
Share
Copied to clipboard
-3x^{2}+2x-1+97=0
Add 97 to both sides.
-3x^{2}+2x+96=0
Add -1 and 97 to get 96.
a+b=2 ab=-3\times 96=-288
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -3x^{2}+ax+bx+96. To find a and b, set up a system to be solved.
-1,288 -2,144 -3,96 -4,72 -6,48 -8,36 -9,32 -12,24 -16,18
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -288.
-1+288=287 -2+144=142 -3+96=93 -4+72=68 -6+48=42 -8+36=28 -9+32=23 -12+24=12 -16+18=2
Calculate the sum for each pair.
a=18 b=-16
The solution is the pair that gives sum 2.
\left(-3x^{2}+18x\right)+\left(-16x+96\right)
Rewrite -3x^{2}+2x+96 as \left(-3x^{2}+18x\right)+\left(-16x+96\right).
3x\left(-x+6\right)+16\left(-x+6\right)
Factor out 3x in the first and 16 in the second group.
\left(-x+6\right)\left(3x+16\right)
Factor out common term -x+6 by using distributive property.
x=6 x=-\frac{16}{3}
To find equation solutions, solve -x+6=0 and 3x+16=0.
-3x^{2}+2x-1=-97
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-3x^{2}+2x-1-\left(-97\right)=-97-\left(-97\right)
Add 97 to both sides of the equation.
-3x^{2}+2x-1-\left(-97\right)=0
Subtracting -97 from itself leaves 0.
-3x^{2}+2x+96=0
Subtract -97 from -1.
x=\frac{-2±\sqrt{2^{2}-4\left(-3\right)\times 96}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 2 for b, and 96 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-3\right)\times 96}}{2\left(-3\right)}
Square 2.
x=\frac{-2±\sqrt{4+12\times 96}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-2±\sqrt{4+1152}}{2\left(-3\right)}
Multiply 12 times 96.
x=\frac{-2±\sqrt{1156}}{2\left(-3\right)}
Add 4 to 1152.
x=\frac{-2±34}{2\left(-3\right)}
Take the square root of 1156.
x=\frac{-2±34}{-6}
Multiply 2 times -3.
x=\frac{32}{-6}
Now solve the equation x=\frac{-2±34}{-6} when ± is plus. Add -2 to 34.
x=-\frac{16}{3}
Reduce the fraction \frac{32}{-6} to lowest terms by extracting and canceling out 2.
x=-\frac{36}{-6}
Now solve the equation x=\frac{-2±34}{-6} when ± is minus. Subtract 34 from -2.
x=6
Divide -36 by -6.
x=-\frac{16}{3} x=6
The equation is now solved.
-3x^{2}+2x-1=-97
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-3x^{2}+2x-1-\left(-1\right)=-97-\left(-1\right)
Add 1 to both sides of the equation.
-3x^{2}+2x=-97-\left(-1\right)
Subtracting -1 from itself leaves 0.
-3x^{2}+2x=-96
Subtract -1 from -97.
\frac{-3x^{2}+2x}{-3}=-\frac{96}{-3}
Divide both sides by -3.
x^{2}+\frac{2}{-3}x=-\frac{96}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-\frac{2}{3}x=-\frac{96}{-3}
Divide 2 by -3.
x^{2}-\frac{2}{3}x=32
Divide -96 by -3.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=32+\left(-\frac{1}{3}\right)^{2}
Divide -\frac{2}{3}, the coefficient of the x term, by 2 to get -\frac{1}{3}. Then add the square of -\frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2}{3}x+\frac{1}{9}=32+\frac{1}{9}
Square -\frac{1}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{289}{9}
Add 32 to \frac{1}{9}.
\left(x-\frac{1}{3}\right)^{2}=\frac{289}{9}
Factor x^{2}-\frac{2}{3}x+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{\frac{289}{9}}
Take the square root of both sides of the equation.
x-\frac{1}{3}=\frac{17}{3} x-\frac{1}{3}=-\frac{17}{3}
Simplify.
x=6 x=-\frac{16}{3}
Add \frac{1}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}