Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-3x^{2}+16x+128=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-16±\sqrt{16^{2}-4\left(-3\right)\times 128}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 16 for b, and 128 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\left(-3\right)\times 128}}{2\left(-3\right)}
Square 16.
x=\frac{-16±\sqrt{256+12\times 128}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-16±\sqrt{256+1536}}{2\left(-3\right)}
Multiply 12 times 128.
x=\frac{-16±\sqrt{1792}}{2\left(-3\right)}
Add 256 to 1536.
x=\frac{-16±16\sqrt{7}}{2\left(-3\right)}
Take the square root of 1792.
x=\frac{-16±16\sqrt{7}}{-6}
Multiply 2 times -3.
x=\frac{16\sqrt{7}-16}{-6}
Now solve the equation x=\frac{-16±16\sqrt{7}}{-6} when ± is plus. Add -16 to 16\sqrt{7}.
x=\frac{8-8\sqrt{7}}{3}
Divide -16+16\sqrt{7} by -6.
x=\frac{-16\sqrt{7}-16}{-6}
Now solve the equation x=\frac{-16±16\sqrt{7}}{-6} when ± is minus. Subtract 16\sqrt{7} from -16.
x=\frac{8\sqrt{7}+8}{3}
Divide -16-16\sqrt{7} by -6.
x=\frac{8-8\sqrt{7}}{3} x=\frac{8\sqrt{7}+8}{3}
The equation is now solved.
-3x^{2}+16x+128=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-3x^{2}+16x+128-128=-128
Subtract 128 from both sides of the equation.
-3x^{2}+16x=-128
Subtracting 128 from itself leaves 0.
\frac{-3x^{2}+16x}{-3}=-\frac{128}{-3}
Divide both sides by -3.
x^{2}+\frac{16}{-3}x=-\frac{128}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-\frac{16}{3}x=-\frac{128}{-3}
Divide 16 by -3.
x^{2}-\frac{16}{3}x=\frac{128}{3}
Divide -128 by -3.
x^{2}-\frac{16}{3}x+\left(-\frac{8}{3}\right)^{2}=\frac{128}{3}+\left(-\frac{8}{3}\right)^{2}
Divide -\frac{16}{3}, the coefficient of the x term, by 2 to get -\frac{8}{3}. Then add the square of -\frac{8}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{16}{3}x+\frac{64}{9}=\frac{128}{3}+\frac{64}{9}
Square -\frac{8}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{16}{3}x+\frac{64}{9}=\frac{448}{9}
Add \frac{128}{3} to \frac{64}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{8}{3}\right)^{2}=\frac{448}{9}
Factor x^{2}-\frac{16}{3}x+\frac{64}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{8}{3}\right)^{2}}=\sqrt{\frac{448}{9}}
Take the square root of both sides of the equation.
x-\frac{8}{3}=\frac{8\sqrt{7}}{3} x-\frac{8}{3}=-\frac{8\sqrt{7}}{3}
Simplify.
x=\frac{8\sqrt{7}+8}{3} x=\frac{8-8\sqrt{7}}{3}
Add \frac{8}{3} to both sides of the equation.