Solve for n
n=40
n = \frac{71}{3} = 23\frac{2}{3} \approx 23.666666667
Share
Copied to clipboard
-3n^{2}+191n-2840=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-191±\sqrt{191^{2}-4\left(-3\right)\left(-2840\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 191 for b, and -2840 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-191±\sqrt{36481-4\left(-3\right)\left(-2840\right)}}{2\left(-3\right)}
Square 191.
n=\frac{-191±\sqrt{36481+12\left(-2840\right)}}{2\left(-3\right)}
Multiply -4 times -3.
n=\frac{-191±\sqrt{36481-34080}}{2\left(-3\right)}
Multiply 12 times -2840.
n=\frac{-191±\sqrt{2401}}{2\left(-3\right)}
Add 36481 to -34080.
n=\frac{-191±49}{2\left(-3\right)}
Take the square root of 2401.
n=\frac{-191±49}{-6}
Multiply 2 times -3.
n=-\frac{142}{-6}
Now solve the equation n=\frac{-191±49}{-6} when ± is plus. Add -191 to 49.
n=\frac{71}{3}
Reduce the fraction \frac{-142}{-6} to lowest terms by extracting and canceling out 2.
n=-\frac{240}{-6}
Now solve the equation n=\frac{-191±49}{-6} when ± is minus. Subtract 49 from -191.
n=40
Divide -240 by -6.
n=\frac{71}{3} n=40
The equation is now solved.
-3n^{2}+191n-2840=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-3n^{2}+191n-2840-\left(-2840\right)=-\left(-2840\right)
Add 2840 to both sides of the equation.
-3n^{2}+191n=-\left(-2840\right)
Subtracting -2840 from itself leaves 0.
-3n^{2}+191n=2840
Subtract -2840 from 0.
\frac{-3n^{2}+191n}{-3}=\frac{2840}{-3}
Divide both sides by -3.
n^{2}+\frac{191}{-3}n=\frac{2840}{-3}
Dividing by -3 undoes the multiplication by -3.
n^{2}-\frac{191}{3}n=\frac{2840}{-3}
Divide 191 by -3.
n^{2}-\frac{191}{3}n=-\frac{2840}{3}
Divide 2840 by -3.
n^{2}-\frac{191}{3}n+\left(-\frac{191}{6}\right)^{2}=-\frac{2840}{3}+\left(-\frac{191}{6}\right)^{2}
Divide -\frac{191}{3}, the coefficient of the x term, by 2 to get -\frac{191}{6}. Then add the square of -\frac{191}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-\frac{191}{3}n+\frac{36481}{36}=-\frac{2840}{3}+\frac{36481}{36}
Square -\frac{191}{6} by squaring both the numerator and the denominator of the fraction.
n^{2}-\frac{191}{3}n+\frac{36481}{36}=\frac{2401}{36}
Add -\frac{2840}{3} to \frac{36481}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(n-\frac{191}{6}\right)^{2}=\frac{2401}{36}
Factor n^{2}-\frac{191}{3}n+\frac{36481}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{191}{6}\right)^{2}}=\sqrt{\frac{2401}{36}}
Take the square root of both sides of the equation.
n-\frac{191}{6}=\frac{49}{6} n-\frac{191}{6}=-\frac{49}{6}
Simplify.
n=40 n=\frac{71}{3}
Add \frac{191}{6} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}