Solve for x
x=\frac{50-7y}{3}
Solve for y
y=\frac{50-3x}{7}
Graph
Share
Copied to clipboard
-3x+15=7\left(y-5\right)
Use the distributive property to multiply -3 by x-5.
-3x+15=7y-35
Use the distributive property to multiply 7 by y-5.
-3x=7y-35-15
Subtract 15 from both sides.
-3x=7y-50
Subtract 15 from -35 to get -50.
\frac{-3x}{-3}=\frac{7y-50}{-3}
Divide both sides by -3.
x=\frac{7y-50}{-3}
Dividing by -3 undoes the multiplication by -3.
x=\frac{50-7y}{3}
Divide 7y-50 by -3.
-3x+15=7\left(y-5\right)
Use the distributive property to multiply -3 by x-5.
-3x+15=7y-35
Use the distributive property to multiply 7 by y-5.
7y-35=-3x+15
Swap sides so that all variable terms are on the left hand side.
7y=-3x+15+35
Add 35 to both sides.
7y=-3x+50
Add 15 and 35 to get 50.
7y=50-3x
The equation is in standard form.
\frac{7y}{7}=\frac{50-3x}{7}
Divide both sides by 7.
y=\frac{50-3x}{7}
Dividing by 7 undoes the multiplication by 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}