Evaluate
-\frac{97}{12}\approx -8.083333333
Factor
-\frac{97}{12} = -8\frac{1}{12} = -8.083333333333334
Share
Copied to clipboard
-\frac{18+5}{6}-\frac{2\times 9+4}{9}+\frac{8\times 24+13}{24}-\frac{2\times 12+11}{12}-\frac{3\times 9+2}{9}-\frac{4\times 24+5}{24}
Multiply 3 and 6 to get 18.
-\frac{23}{6}-\frac{2\times 9+4}{9}+\frac{8\times 24+13}{24}-\frac{2\times 12+11}{12}-\frac{3\times 9+2}{9}-\frac{4\times 24+5}{24}
Add 18 and 5 to get 23.
-\frac{23}{6}-\frac{18+4}{9}+\frac{8\times 24+13}{24}-\frac{2\times 12+11}{12}-\frac{3\times 9+2}{9}-\frac{4\times 24+5}{24}
Multiply 2 and 9 to get 18.
-\frac{23}{6}-\frac{22}{9}+\frac{8\times 24+13}{24}-\frac{2\times 12+11}{12}-\frac{3\times 9+2}{9}-\frac{4\times 24+5}{24}
Add 18 and 4 to get 22.
-\frac{69}{18}-\frac{44}{18}+\frac{8\times 24+13}{24}-\frac{2\times 12+11}{12}-\frac{3\times 9+2}{9}-\frac{4\times 24+5}{24}
Least common multiple of 6 and 9 is 18. Convert -\frac{23}{6} and \frac{22}{9} to fractions with denominator 18.
\frac{-69-44}{18}+\frac{8\times 24+13}{24}-\frac{2\times 12+11}{12}-\frac{3\times 9+2}{9}-\frac{4\times 24+5}{24}
Since -\frac{69}{18} and \frac{44}{18} have the same denominator, subtract them by subtracting their numerators.
-\frac{113}{18}+\frac{8\times 24+13}{24}-\frac{2\times 12+11}{12}-\frac{3\times 9+2}{9}-\frac{4\times 24+5}{24}
Subtract 44 from -69 to get -113.
-\frac{113}{18}+\frac{192+13}{24}-\frac{2\times 12+11}{12}-\frac{3\times 9+2}{9}-\frac{4\times 24+5}{24}
Multiply 8 and 24 to get 192.
-\frac{113}{18}+\frac{205}{24}-\frac{2\times 12+11}{12}-\frac{3\times 9+2}{9}-\frac{4\times 24+5}{24}
Add 192 and 13 to get 205.
-\frac{452}{72}+\frac{615}{72}-\frac{2\times 12+11}{12}-\frac{3\times 9+2}{9}-\frac{4\times 24+5}{24}
Least common multiple of 18 and 24 is 72. Convert -\frac{113}{18} and \frac{205}{24} to fractions with denominator 72.
\frac{-452+615}{72}-\frac{2\times 12+11}{12}-\frac{3\times 9+2}{9}-\frac{4\times 24+5}{24}
Since -\frac{452}{72} and \frac{615}{72} have the same denominator, add them by adding their numerators.
\frac{163}{72}-\frac{2\times 12+11}{12}-\frac{3\times 9+2}{9}-\frac{4\times 24+5}{24}
Add -452 and 615 to get 163.
\frac{163}{72}-\frac{24+11}{12}-\frac{3\times 9+2}{9}-\frac{4\times 24+5}{24}
Multiply 2 and 12 to get 24.
\frac{163}{72}-\frac{35}{12}-\frac{3\times 9+2}{9}-\frac{4\times 24+5}{24}
Add 24 and 11 to get 35.
\frac{163}{72}-\frac{210}{72}-\frac{3\times 9+2}{9}-\frac{4\times 24+5}{24}
Least common multiple of 72 and 12 is 72. Convert \frac{163}{72} and \frac{35}{12} to fractions with denominator 72.
\frac{163-210}{72}-\frac{3\times 9+2}{9}-\frac{4\times 24+5}{24}
Since \frac{163}{72} and \frac{210}{72} have the same denominator, subtract them by subtracting their numerators.
-\frac{47}{72}-\frac{3\times 9+2}{9}-\frac{4\times 24+5}{24}
Subtract 210 from 163 to get -47.
-\frac{47}{72}-\frac{27+2}{9}-\frac{4\times 24+5}{24}
Multiply 3 and 9 to get 27.
-\frac{47}{72}-\frac{29}{9}-\frac{4\times 24+5}{24}
Add 27 and 2 to get 29.
-\frac{47}{72}-\frac{232}{72}-\frac{4\times 24+5}{24}
Least common multiple of 72 and 9 is 72. Convert -\frac{47}{72} and \frac{29}{9} to fractions with denominator 72.
\frac{-47-232}{72}-\frac{4\times 24+5}{24}
Since -\frac{47}{72} and \frac{232}{72} have the same denominator, subtract them by subtracting their numerators.
\frac{-279}{72}-\frac{4\times 24+5}{24}
Subtract 232 from -47 to get -279.
-\frac{31}{8}-\frac{4\times 24+5}{24}
Reduce the fraction \frac{-279}{72} to lowest terms by extracting and canceling out 9.
-\frac{31}{8}-\frac{96+5}{24}
Multiply 4 and 24 to get 96.
-\frac{31}{8}-\frac{101}{24}
Add 96 and 5 to get 101.
-\frac{93}{24}-\frac{101}{24}
Least common multiple of 8 and 24 is 24. Convert -\frac{31}{8} and \frac{101}{24} to fractions with denominator 24.
\frac{-93-101}{24}
Since -\frac{93}{24} and \frac{101}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{-194}{24}
Subtract 101 from -93 to get -194.
-\frac{97}{12}
Reduce the fraction \frac{-194}{24} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}