Skip to main content
Solve for x
Tick mark Image

Similar Problems from Web Search

Share

\left(-3+i\right)x+3+i=0
Combine -2ix and \left(-3+3i\right)x to get \left(-3+i\right)x.
\left(-3+i\right)x+i=-3
Subtract 3 from both sides. Anything subtracted from zero gives its negation.
\left(-3+i\right)x=-3-i
Subtract i from both sides.
x=\frac{-3-i}{-3+i}
Divide both sides by -3+i.
x=\frac{\left(-3-i\right)\left(-3-i\right)}{\left(-3+i\right)\left(-3-i\right)}
Multiply both numerator and denominator of \frac{-3-i}{-3+i} by the complex conjugate of the denominator, -3-i.
x=\frac{\left(-3-i\right)\left(-3-i\right)}{\left(-3\right)^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x=\frac{\left(-3-i\right)\left(-3-i\right)}{10}
By definition, i^{2} is -1. Calculate the denominator.
x=\frac{-3\left(-3\right)-3\left(-i\right)-i\left(-3\right)-\left(-i^{2}\right)}{10}
Multiply complex numbers -3-i and -3-i like you multiply binomials.
x=\frac{-3\left(-3\right)-3\left(-i\right)-i\left(-3\right)-\left(-\left(-1\right)\right)}{10}
By definition, i^{2} is -1.
x=\frac{9+3i+3i-1}{10}
Do the multiplications in -3\left(-3\right)-3\left(-i\right)-i\left(-3\right)-\left(-\left(-1\right)\right).
x=\frac{9-1+\left(3+3\right)i}{10}
Combine the real and imaginary parts in 9+3i+3i-1.
x=\frac{8+6i}{10}
Do the additions in 9-1+\left(3+3\right)i.
x=\frac{4}{5}+\frac{3}{5}i
Divide 8+6i by 10 to get \frac{4}{5}+\frac{3}{5}i.